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Abstract

Learning a continuous and reliable representation of physi-
cal fields from sparse sampling is challenging and it affects
diverse scientific disciplines. In a recent work, we present a
novel model called MMGN (Multiplicative and Modulated
Gabor Network) with implicit neural networks. In this work,
we design additional studies leveraging explainability meth-
ods to complement the previous experiments and further en-
hance the understanding of latent representations generated
by the model. The adopted methods are general enough to
be leveraged for any latent space inspection. Preliminary re-
sults demonstrate the contextual information incorporated in
the latent representations and their impact on the model per-
formance. As a work in progress, we will continue to verify
our findings and develop novel explainability approaches.

Introduction
Field reconstruction is the process involving the recreation
of a physical field denoted as u, depicting the spatial and
temporal distribution of a specific parameter (e.g., temper-
ature, velocity, or displacement). Its significance spans di-
verse scientific disciplines such as geophysics, climate sci-
ence, and fluid mechanics, due to several key functions.
First, it facilitates the extrapolation of values at unmeasured
locations by leveraging available data (Kutz et al. 2016).
It also contributes to the identification of patterns, trends,
and variations within the investigated parameters (Shu, Li,
and Farimani 2023; Wang et al. 2022). Lastly, field recon-
struction plays a crucial role in optimizing sensor placement
and refining data collection strategies, thereby enhancing the
effectiveness of experimental designs (Fukami et al. 2021;
Krause, Singh, and Guestrin 2008).

Recent progress in machine learning has sparked a grow-
ing interest in addressing field reconstruction challenges
through implicit neural representations (Xie et al. 2022;
Mildenhall et al. 2021). These representations harness mul-
tilayer perceptrons (MLPs) to represent images, videos, and
3D objects. Specifically, coordinate-based MLPs operate
by taking low-dimensional coordinates, such as spatial po-
sition (x) or time index (t), as input and predicting the
value of a learned signal (u) for each coordinate point. The
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coordinate-based MLP effectively learns an implicit, contin-
uous, and differentiable function, mapping input coordinates
to the target signal u = Fθ(x, t).

Driven by the quest for an enhanced representation
method, we introduce a context-aware indexing mechanism.
Specifically, we integrate existing contextual information
into the temporal coordinate (t). Given the dynamic changes
in the quantity and locations of available measurements over
time t, we propose a framework where an encoder extracts
a latent representation from real-time measurements. This
latent representation is then utilized to steer the model to-
wards the desired time instance. Paired with an implicit neu-
ral representation-based decoder, our proposed method ex-
cels in the seamless reconstruction of continuous fields (Luo
et al. 2024).

Meanwhile, as neural networks become more compli-
cated, it is a grand challenge to increase the overall inter-
pretability and trust especially when adopted by scientific
users. For our field reconstruction model, the learned la-
tent representation is an essential component and incorpo-
rates information about the measurements beyond temporal
indexing. In this work, we present the application of sev-
eral dimension reduction approaches and use them as ex-
plainability methods for latent representation understanding.
Concretely, we leverage explainability tools to demonstrate
that the latent representation has sufficiently encoded the
real-time measurements. We take the use case of continuous
field reconstruction using implicit neural networks for cli-
mate science and report the findings as a work in progress.

Related Work
Explainable Artificial Intelligence (XAI) technique has
flourished in the past decade. For the latent space under-
standing, since the latent vectors are difficult to interpret
by humans directly, many methods are proposed to tackle
the dimensionality challenges. Embedding techniques e.g.,
t-Distributed Stochastic Neighbor Embedding (t-SNE) (van
der Maaten and Hinton 2008) are used to project high-
dimensional data into 2D space and study whether the inter-
nal correlations of the data is preserved in the latent space.
Clustering is another common method to apply to the latent
vectors and demonstrate the relationship. Moreover, both
linear and nonlinear methods are used to estimate the sim-



ilarity between latent representations (Mehrer et al. 2020).
Developing visual analytics frameworks is another branch
of research to facilitate user-directed analysis exploring the
latent space interactively (Shen, Wang, and Shen 2020). We
find that existing works for dimensionality and decompo-
sition studies can be beneficiary for general-purpose latent
understanding, which are less commonly adopted beyond t-
SNE visualization and ablation studies.

Methodology
The MMGN model
Traditional implicit neural networks incorporate the time in-
dex along with spatial coordinates. Here, we present a neural
network reconstruction method called MMGN (Multiplica-
tive and Modulated Gabor Network) (Luo et al. 2024), char-
acterized by an encoder-decoder architecture. For the en-
coder, we propose to utilize measurements, represented as
u1
t , u2

t , u3
t ,... at time t, for implicit model guidance instead

of relying on t for explicit pointing. Therefore, we construct
an encoder E(·) to convert the observed measurements into
a latent code zt. Subsequently, we employ a decoder D(·)
that utilizes both the encoded information and spatial coor-
dinates x to reconstruct the underlying physical field.

Baseline :u(x, t) = F (x, t)

Proposed :u(x, t) = D(x, zt) = D(x, E(u1
t , u

2
t , . . . ))

(1)
• Encoder: Autoencoders (AE) and their probabilistic vari-
ant, variational autoencoders (VAE) (Kingma and Welling
2014), are frequently employed for representation learning,
leveraging their inherent latent variable structures. However,
conventional AE and VAE encounter challenges when deal-
ing with the variability of sensor locations and their fluctua-
tions over time. While their graph counterparts can manage
spatial variability, and modified versions address dynamic
graphs, they become computationally demanding for exten-
sive graphs and encounter difficulties with long-range de-
pendencies. In contrast, auto-decoder, as exemplified in Park
et al. (2019), demonstrates reduced underfitting and height-
ened flexibility. It accommodates observation grids of vary-
ing forms, including irregular or those existing on a man-
ifold, without necessitating a specialized encoder architec-
ture, provided the decoder shares the same property. There-
fore, the auto-decoder is chosen as the backbone for the en-
coder due to its ability to accommodate free-formed obser-
vations, considering that the number and positions of avail-
able observations vary over time.
• Decoder: The decoder inputs comprise two components:
spatial coordinates (x) and latent codes (z). Initially, pro-
cessing x through fully-connected feed-forward layers re-
sults in a coordinate-based MLP. Although such an MLP
based on coordinates can provide a continuous representa-
tion, it encounters challenges in learning high-frequency sig-
nals, a phenomenon referred to as spectral bias. Recent stud-
ies suggest that addressing this issue involves incorporat-
ing positional encoding with Fourier features (Tancik et al.
2020) or introducing periodic non-linearities in the first hid-

den layer (Sitzmann et al. 2020). In our approach, we em-
ploy Gabor filters g(·) over Fourier bases to transform the
coordinates. Following the transformation of coordinates x,
we introduce a modulation step where the transformed co-
ordinates g(x) undergo modulation through a multiplica-
tive layer, facilitating the integration of g(x) and z. Specifi-
cally, the decoder incorporates a multiplicative filter network
(MFN) (Fathony et al. 2020) as its backbone network. This
choice is motivated by the recursive mechanisms embedded
in MFN, enabling improved fusion of spatial coordinates (x)
and latent codes (z).
• Trained models: The MMGN model used in this work is
trained with 5% sampling rate of the original dataset gener-
ated by the CESM2 climate model (Danabasoglu et al. 2020)
that simulates Earth’s climate states. We take monthly aver-
aged global surface temperature data for model testing. That
said, the network can be trained using a sampling rate at
5% of the training data to recover a continuous represen-
ation of it without substantial errors. Moreover, by altering
the hyperparameter k defining the size of latent codes zk, we
can train different MMGN models. In our previous study, we
train 10 models with latent sizes, ranging from 1 to 512 by
doubling the latent size at a time, and collect the correspond-
ing learned latent codes for all T time steps. We found that
increasing the latent size can reduce the reconstruction error
and the improvement becomes more subtle when the latent
size is moderate.

Explainability approaches
We adopt several explainability methods to conduct addi-
tional studies that further understand the impact of latent
codes on the model performance and illustrate the contex-
tual information latent codes integrate.

• Embedding and Clustering Latent representations are
spatiotemporal vectors in high-dimensional space. To com-
pare the representations in different latent spaces, we first
adopt embedding techniques to project data into a 2D plane.
For the demonstration, we use t-SNE to generate the dis-
tribution of T latent vectors of each latent space and use
K-means clustering to partition them into groups. Then, we
visualize the distributions and quantify the statistics of clus-
ters for all the latent spaces so that the variations can be ob-
served. This helps to explain the impact of latent size on the
acquired contextual information by the encoder E(·).
• Correlation Analysis Latent codes can also be repre-
sented by a T ×k matrix where k-dimensional latent vectors
are stacked in raster order. Comparing the latent spaces be-
comes the comparison of the corresponding matrices so that
the rows represent samples and the columns represent fea-
tures. In that sense, we can use correlation analysis to gener-
ate patterns of different latent spaces and compare their cor-
relations. We leverage both Principal Component Analysis
(PCA) (Hotelling 1936) and Canonical Correlation Analysis
(CCA) (Hä 2007) in this study.

PCA identifies the direction i.e., the principal component,
formed by a linear combination of original features that cap-
tures the maximal variance of the data. The explained vari-
ance ratio (i.e., normalized eigenvalue) is a measurement



Figure 1: The t-SNE distribution changes in three latent spaces: (left) 4-D, (middle) 512-D, and (right) the original data; the
color represents the temporal indexing.

used to explain the proportion of variance of the matrix ex-
plained by the corresponding principal component. Thus, we
generate k principal components with their corresponding
explained variance ratios for the matrix with k-dimensional
latents and compare the trends. Meanwhile, we also apply
PCA to the original data and generate 512 explained vari-
ance ratios. By visualizing the trends of ratios, we could
evaluate the coherence of the rank of information preserved
in latent spaces and the original data.

CCA provides a more direct way to identify and measure
the associations between two sets of features, here two ma-
trices. It determines pairs of canonical variates u from the
first set and v from the second set so that they are maximally
correlated with each other. The difference between PCA and
CCA roots in that while PCA finds the linear combination of
features that maximizes variance in the data, CCA looks for
a linear combination of features in both data that have the
strongest correlation between each other.
• Tensor Factorizations Tensor factorizations provide a
method for effectively explaining surrogate model com-
plexity. Tensor factorizations are techniques for decompos-
ing multidimensional arrays (tensors) into simpler, con-
stituent components. Among various tensor factorization
techniques, Tucker Decomposition plays a pivotal role in an-
alyzing and interpreting multiway data. This method decom-
poses a tensor into a core tensor multiplied by factor matri-
ces along each dimension of the tensor. The factor matrices
describe the dominant modes along each variable, while the
core tensor describes their interactions or mixing. Both the
data used, and output derived from field reconstruction, in-
trinsically arises as a tensor. The Tucker decomposition is a
natural tool to reveal the dominant modes and interactions
within these data sets. See (Kolda and Bader 2009) for more
details.

We leverage the Tucker Decomposition to assess how well
MMGN represents the dominant modes (i.e., x and t) and
their mixing. By taking the latent size at 256 for this study,
the Tucker decomposition of both the training set and the
model output are computed. The factor matrices and the
mixing tensor are then compared to see how well MMGN

does at reproducing the modes and mixing complexity of
the Earth system data.

To compare the modes, we compute the Pearson corre-
lation coefficient between the modes for each variable. A
high matching across modes in a variable indicates that
MMGN has learned the data generating process for that
particular variable. To compare the cores, we compute the
Tucker decomposition for cores shaped [r, r, r] for each
r = 1, 2, . . . 200. The values of the core are then normalized,
and the entropy of the core is computed. The entropy mea-
sures the complexity of the mixing at these different mul-
tiranks. One should expect that the entropy of the MMGN
model to be less than the entropy of the training data for
each r, with exact matching indicating it has captured the
mixing process between the variables.
• Ablation Study Finally, an ablation study is designed to
complement the previous effort inspecting the contribution
of each dimension of the latent vector. By ablating one di-
mension at a time during the inference, we observed a re-
duced performance but the mean squared error (MSE) keeps
mitigating when a bigger latent size is adopted. In this study,
we want to decompose the overall error into the temporal
and spatial counterparts and check if any resonance exists.

Results
• Embedding and Clustering The t-SNE visualizations are
shown in Figure 1 to illustrate how the distributions of la-
tents in different latent spaces vary. Only the 4-D, 512-D,
and the original spaces are shown for parsimony. Our goal is
to understand the impact of the latent size on the learned rep-
resentations. We observe that the lower dimensional space
has more diverse but compact clusters and it gets more
evenly spreading out when the dimension increases. We also
find more string-shaped local clusters having the same color
in the higher dimensional space. Since we use the temporal
indexing t as colors, these clusters are formed by the tem-
porally adjacent latent vectors. The same pattern and distri-
bution are observed in the original data. We conclude that
the higher latent space better captures the global distribution
of the original data, and to some extent, also maintains lo-



Figure 2: Left: The standard deviations of clusters diminish across latent spaces and they are compared with the ones of the
original data (the rightmost boxplot). Middle: The trendings of explained variance ratios of the principal components for all
latent spaces (illustrating only the top 5 sizes) and compare them with the trending of the original data. Right: Ablation result
indicating spatial linkage of temporal indexing.

Figure 3: Top: Correlation plots for the three variables. Bot-
tom: Complexity of Tucker core for different multi-ranks.

cal coherence (string-shaped small clusters). Note here the
use of t-SNE projections of 2-D latents instead of their orig-
inal coordinates is meant for a fair comparison with other
latent spaces. Then, the clustering results are generated and
we collect the standard deviations σ1, ..., σn of the vectors
in the corresponding n clusters for all the latent spaces. As a
preliminary result, the increased σ pattern also confirms that
the distribution shifts from compact and diverse groups to a
wider space spanning as shown in Figure 2(left).
• Correlation Analysis We aim to use correlation analysis
to understand the impact of latent size in terms of rank com-
plexity and potential information loss. First, the PCA results
are shown in Figure 2(middle) where the explained variance
ratios of higher latent spaces are compared with the one of
the original data. The slope of the curve suggests the rank
of data complexity. For example, a steep slope means with
the first few principal components the most variances can be
preserved. Compared to the slope of the original data, we
observe a similar slope starting from a latent size at 64 and
beyond. Furthermore, we also generate the CCA canonical
variate pairs between two cases: 1) two latent spaces and
2) a latent space and the original data. Then we use Pear-
son correlation coefficient to gauge their relations. We find

that all the paired canonical variates are fully correlated for
both cases. We conclude that any latent code is a reduced
representation presenting consistent information about the
original data.
• Tensor Factorizations Similar to the purpose of adopting
correlation analysis, the results of the tensor based analysis
are shown in Figure 3. For the factor matrices, we see that
the MMGN model has strong agreement with the true fac-
tors for the first 20 temporal and longitudinal components,
and first 40 latitudinal components. These top modes are re-
sponsible for the majority of the reconstruction of the ten-
sor (roughly ∼ 4% relative error), so agreement here indi-
cates MMGN has learned the dominant spatial temporal pat-
terns of the dataset. The divergence of higher order modes
suggests that MMGN fails to capture the higher frequency
spatial components of the data (see Figure 4). The fact that
there is stronger agreement in the latitude modes indicates
the model had an easier time capturing this component.

From Figure 3 we see that the core of the MMGN model
has complexity that matches the true data up to multi-rank
[75, 75, 75]. At this high of a rank, the tensor decomposition
for both the true data and the MMGN output have a rela-
tive reconstruction error of ∼ 1%. The agreement of model
complexity up to this large multi-rank indicates that MMGN
accurately captures the mixing processes of the underlying
physical phenomenon.
• Ablation Study We collect the sets of temporal and spa-
tial errors for the model of a latent size at 64. A preliminary
result for the spatial linkage of the latent dimension is shown
in Figure 2(right). We use colors to indicate the latent dimen-
sion index (ranging between 0 and 63) so that once ablated
it causes the most performance reduction at a spatial loca-
tion. It is interesting to observe that individual latent dimen-
sions contribute to adjacent regions for low-fidelity areas.
This plot also shows the MMGN model can capture long-
range dependencies. We will further verify this finding in
future work.

Conclusion
The present studies leveraged dimensionality reduction ap-
proaches to explain the effect of the encoder latent space
dimension has on the representation. These tools have im-



Figure 4: Latitude modes 1, 2, 3 in blue versus latitude
modes 101, 102, 103 in red. Higher order modes capture
higher frequency information compared to lower order
modes.

proved understanding of the learned latent representations.
As a work in progress, we will keep verifying the current
findings and work on potential extensions, developing fea-
ture importance methods attributing the input features for
the prediction.
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