
Predicting Timescales in Dynamical Systems With Explainable Machine Learning
Models

Demetri Liousas*1, Andrew D. Simin1, Aditya Kashi2, Wesley H. Brewer2,
Stephen M. de Bruyn Kops1, Muralikrishnan Gopalakrishnan Meena*2 †

1Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
2National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

†To whom correspondence should be addressed: gopalakrishm@ornl.gov

Abstract

We aim to extract the timescales governing the time evolution
of a dynamical system by creating physical explanations for
time-series machine learning (ML) models. We employ the
damped pendulum, a simple dynamical system with analyt-
ical solutions for the underlying timescales, to demonstrate
this framework for explainable ML models. Our analysis re-
veals that by discovering the minimum information required
to train a time-series ML model, we can identify the physical
timescales of the underlying dynamical system.

Introduction
Understanding and modeling physical time-evolving dy-
namical systems is a formidable challenge encountered
across various science and engineering domains. Complex
examples in nature include turbulence in the ocean and
atmosphere (Wyngaard 1992). Nonlinear dynamics make
these systems complex and challenging to represent math-
ematically. Typically, these models are described by cou-
pled nonlinear partial differential equations that can only be
solved numerically with extreme computational costs (Nor-
man et al. 2021).

Machine learning (ML) advancements have created a
new class of models that can explain the behavior of time-
evolving physical systems by implicitly learning their under-
lying dynamics (Connor, Martin, and Atlas 1994; Yu et al.
2019; Che et al. 2018; Hewamalage, Bergmeir, and Bandara
2021). In this study, we evaluate the ability of ML mod-
els to learn time series generated from a system of cou-
pled ordinary differential equations (ODEs) and extract the
timescales that define the behavior of the dynamical system.
We use the damped pendulum (Nelson and Olsson 1986) as a
sample problem to demonstrate the framework because it is
a simple and well-studied dynamical system. It has two con-
stant timescales, which can be derived analytically, allow-

*These authors contributed equally.
XAI4Sci: Explainable machine learning for sciences, AAAI-24
(xai4sci.github.io)

This manuscript has been authored in part by UT-Battelle,
LLC, under contract DE-AC05-00OR22725 with the US Depart-
ment of Energy (DOE). The publisher acknowledges the US gov-
ernment license to provide public access under the DOE Public Ac-
cess Plan (http://energy.gov/downloads/doe-public-access-plan).

ing for theoretical analysis of the ML models’ performance.
We study this sample problem with two time-series ML
models: long short-term memory (LSTM) (Hochreiter and
Schmidhuber 1997) and neural ordinary differential equa-
tions (NODE) (Chen et al. 2018). We evaluate the ability of
these models to extract the physical timescales by relating
the physical timescales to ML hyperparameters analogous
to the timescales of the time-series data.

Time-Series Prediction with Neural Networks
We aim to create a framework for modeling a system of non-
linear ODEs, even if it has no closed-form analytical solu-
tions. We represent the ODEs in discrete time as

dq(ti)
dt

= f (q(ti), ti) (1)

where q represents the state of the system at time ti, and f
is the vector function defining the right-hand side (RHS) of
the system of ODEs; the RHS here is modeled generically
as the functional form is not always known.

We would like to model the RHS of a system of ODEs
using a neural network so that a generic numerical ODE
solver can solve for the time evolution of the system’s states,
q(t). We use neural networks because they have the capacity
to approximate any Borel measurable function if it has the
proper architecture (Hornik, Stinchcombe, and White 1989).
We also require a neural network capable of modeling the
time history, as the time evolution of most dynamic systems
depends on their previous states. We use neural networks
with sequence-based modeling to satisfy this requirement,
where a sequence refers to the time history used in the time
series model or, more simply, its memory.

Generally, sequences of time-series data have two pa-
rameters analogous to timescales in physical time-evolving
systems, as illustrated in Fig. 1. One timescale is the se-
quence length, which is the entire time span of the data in
one sequence; a sequence is a subsample of a time series,
not the whole time series. The second timescale is the pe-
riod between samples within a single sequence, often re-
ferred to by its inverse, the sampling frequency. With respect
to physical timescales, the sequence length of the time se-
ries is the longest timescale that can be modeled, and the
sampling period is the shortest timescale. The timescales



Sequence Length

Sampling Period

Sequence 

time

Figure 1: Illustration of the timescales defined by a sequence
in a time-series data.

LSTM

Neural NetworkInput

 

Output

 
RHS function  

ODE Solver

Figure 2: Sample portrayal of the LSTM modeling frame-
work used in the current study for predicting the time evolu-
tion of a system of ODEs.

of the time-series data are hyperparameters for sequence-
based ML models. Our aim is to reveal a relationship be-
tween these ML and physical timescales, thus creating a
physics-based explanation for the ML hyperparameters. We
analyze two neural network architectures for sequence mod-
eling: Long Short-Term Memory (LSTM) and Neural Ordi-
nary Differential Equations (NODE).

Long Short-Term Memory (LSTM)
The recurrent neural network (RNN) architecture allows
for processing sequences of inputs, which theoretically al-
lows it to model time-series data (Connor, Martin, and Atlas
1994; Che et al. 2018; Hewamalage, Bergmeir, and Bandara
2021). The LSTM architecture improves the generic RNN
by increasing stability and predictive performance, making
it more attractive to use (Hochreiter and Schmidhuber 1997).
We use an LSTM model to represent the RHS of Eq. 1. Our
modeling framework is depicted in Fig. 2. The input of the
LSTM model is a full sequence, or time history, of time-
series data, q(ti−n), q(ti−(n−1)), . . . , q(ti) where n is the
sequence length. The output of the LSTM model is the RHS
of the system of ODEs, f (q(ti), ti). This is fed into an ODE
solver (such as RK4) to obtain the next state qi+1.

In practice, we find that the LSTM modeling framework
lacks the desired stability and accuracy for modeling the
time evolution of q, which will be demonstrated later in this
paper.

Neural Ordinary Differential Equations (NODE)
NODE is a neural network architecture devised by Chen
et al. for modeling time-series data from systems of ODEs.
Rather than just modeling the RHS of a system of ODEs,
NODE integrates the ODE solver into the ML model (Chen

NODE

Neural Network

Input
Output

 

RHS function

ODE Solver

Figure 3: Sample portrayal of the NODE modeling frame-
work used in the current study for predicting the time evolu-
tion of a system of ODEs.

et al. 2018). The hidden state of NODE itself is an ODE

dq(t)
dt

= f(q(t), t, θ), (2)

where θ is the weight tensor which the optimization process
varies. The optimization is performed on a black-box ODE
solver for Eq. 2. The loss L (q(t1)) is given by

L
(
q(t0) +

∫ t1

t0

f(q(t), t, θ)dt

)
(3)

which is discretized to use a numerical ODE solver

L (ODESolve(q(t0),f , t0, t1, θ)) . (4)

The input of NODE is the current state of the system q(ti)
and the desired time sequence ti, ti+1, . . . , ti+n at which
to evaluate the state, where n is the sequence length. The
output is the state at those time instances q(ti), q(ti+1), . . . ,
q(ti+n). This framework is depicted in Fig. 3.

The differences between the time dependencies of LSTM
and NODE are summarized in Fig. 4. While LSTM depends
on the time history of the data, the NODE model only needs
the current state to predict the time evolution of a system.
Nonetheless, the two timescales – sequence length and sam-
pling frequency – are hyperparameters to both models. We
investigate these hyperparameters to find the minimum in-
formation needed to model a system of ODEs accurately.

Option 1: ODE+LSTM Option 2: NODE
time

Figure 4: Illustration of the difference in time-dependence
between the LSTM and NODE modeling frameworks.

Damped Pendulum Sample Problem
A canonical problem to test the capability of our framework
is the simple damped pendulum (Nelson and Olsson 1986).



This nonlinear system can be written as a system of coupled
nonlinear ODEs and has analytical solutions using the small-
angle approximation.

Dynamics Model
The governing equations of the pendulum are typically writ-
ten in terms of its angular position θ and angular velocity
ω. However, many dynamical systems in engineering and
nature are best described in terms of energy. We write the
system of ODEs governing the time evolution of the pendu-
lum in terms of its kinetic energy K, potential energy P , and
the flux F between them. It is given by

dK
dt

= −2b

m
K − F (5)

dP
dt

= F (6)

dF
dt

= 2
g

l
(K − P ) +

P

ml2
(2K − P )− b

m
F, (7)

where b is the damping coefficient, m is the mass of the pen-
dulum bob, g is the acceleration due to gravity, and l is the
length of the pendulum. Thus, the system’s state is defined
as q = [K P F ]

T . The system of ODEs is solved with
the initial conditions K0, P0, and F0.

Timescale Analysis
The pendulum has two timescales that govern its time evo-
lution. The shorter timescale is the oscillating timescale τo
and the longer one is the damping timescale τd. They can
be derived analytically using the small-angle approximation
(Nelson and Olsson 1986) and are given by

τo =

√
ℓ

g
(8)

τd =
m

b
. (9)

We are only interested in cases where the oscillating
timescale is much shorter because this gives periodic mo-
tion. This happens when the pendulum is underdamped such
that

τo ≪ τd. (10)

We can use these timescales to determine the theoretical
minimum information that a data-driven model would need
to learn the dynamics of a pendulum effectively. An accu-
rate model must capture the information corresponding to
the damping and oscillating timescales.

Results
We perform a parametric study in the ML timescale hyper-
parameter space comprising the sequence length and sam-
pling frequency. We study sequence lengths that span time
periods of 0.02 to 5.5, and sampling frequencies from 8 to
256.

We select a damped pendulum with damping coefficient
b = 0.5, mass m = 1, gravity g = 25, length ℓ = l, and
initial conditions K0 = 0, P0 = 1 and F0 = 0. Note that

for these parameters, τd >> τo. Thus, the pendulum is un-
derdamped. The raw data was generated numerically using
these settings of the pendulum. The sequenced training and
testing data for the ML models was derived from the raw
data using the various sequencing parameters of the study.
Training and testing of the models were performed over dif-
ferent time intervals.

LSTM Results
We used an LSTM model with two layers with a hidden size
of five. We also use a multi-layer perceptron (MLP) with one
hidden layer of ten neurons before the output layer. A Leaky
Rectified Linear Unit (LeakyReLU) activation function with
a slope of 0.1 is applied for both the LSTM and MLP lay-
ers. We measure the mean squared error as the loss function
for optimizing the network weights during the training pro-
cess. We select a learning rate of 0.001 and train the model
for 4000 epochs, by which the model training converges.
Towards the end of this training process, we use ensem-
ble learning to improve the stability of the LSTM model.
These hyperparameters are used for every LSTM model in
the parametric study.

The parametric study results are shown in Fig. 5a. Small
sampling frequency and sequence length values have very
high errors because too little information is provided to the
model. This lives in the region below the minimum infor-
mation line. The minimum information line corresponds to
when the sequence length to sampling period ratio equals
the analytically computed damping to oscillating timescale
ratio. The models behave much more accurately above this
line despite the local regions of high model error. This dis-
tinction shows that the LSTM framework can explain the
damped pendulum system dynamics by extracting its physi-
cal timescales.

NODE Results
Through experimentation, we selected the other hyperpa-
rameters for the NODE model. We chose an absolute tol-
erance of 10−3 and a relative tolerance of 10−4 for the inte-
grated ODE solver. Furthermore, an MLP with three layers
and 20 neurons per layer was used to represent the RHS of
the ODE. We use a Sigmoid Linear Unit (SiLU) activation
function for these layers. We apply a learning rate of 0.05
and 1000 epochs for training due to the faster convergence
of NODE compared to LSTM.

The results of the parametric study for NODE are shown
in Fig. 5b. Similar to LSTM, the NODE model error is very
high below the minimum information line, and the perfor-
mance is much better above it. Again, these results demon-
strate that analyzing the inherent timescales of the input data
to the time-series ML model, NODE for the current discus-
sion, can enable one to extract the timescales of the physical
system. Furthermore, we identify that these timescales cor-
respond to the minimum information required by the time-
series ML models to predict the system dynamics accurately.

We observe that the NODE model performs notably bet-
ter than LSTM in this parametric study. The maximum and
minimum errors observed in the NODE model are an order



(a) LSTM Model (b) NODE Model

Figure 5: Shaded contour plot of the parametric study with both ML models. The lighter-colored regions correspond to lower
model error. The error metric used is the maximum normalized rms error (NRMSE) among the state variables. The minimum
information line is denoted by the black dashed lines.

of magnitude smaller than those of the LSTM model. Fur-
thermore, NODE is much more numerically stable above
the minimum information line demonstrated by the much
smoother plateau than LSTM, which has many local min-
ima and maxima.

Concluding Remarks
We develop physical explanations for the information re-
quired by time-series machine learning (ML) models by an-
alyzing the timescales of the input data. We broadly identify
the timescales of the input sequence data for time-series ML
models as the sequence length and sampling frequency of
the data. We perform a parametric analysis of the effect of
these ML timescales on the performance of two time-series
ML models, namely LSTM and NODE, to effectively model
the time evolution of dynamical systems. By employing the
analysis on a simple dynamical system, a damped pendulum,
we showed that the minimum information (ML timescales)
required by the time-series ML models to effectively model
the time evolution of the pendulum corresponds to the phys-
ical timescale of the pendulum.

Specifically for the damped pendulum, we observe that
the minimum information needed for an ML model is when
the ratio of the ML timescales is equal to that of the oscil-
lating and damping timescales of the pendulum. Intuitively,
this result means that the sampling frequency must be large
enough to pick up on the oscillations of the pendulum, and
the ML model needs to see a long enough sequence of data
to model the damping of the pendulum. The current frame-
work of timescale extraction from time-series ML models is

a valuable tool for creating physical explanations of such
models’ behavior. Moreover, such data-driven techniques
can be extended to physical problems where experimental
or numerical data is available, but limited information of the
physical timescales is known.

Acknowledgments
This research was supported by the Office of Naval Research
via grant N00014-19-1-2152. High performance computing
resources were provided via the U.S. Department of Energy
(DOE) INCITE program by the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facil-
ity supported under Contract DE-AC05-00OR22725. Com-
puting resources were also provided through the U.S. De-
partment of Defense High Performance Computing Mod-
ernization Program. This project was supported by an Hon-
ors Research Grant from the University of Massachusetts
Amherst Commonwealth Honors College.

References
Che, Z.; Purushotham, S.; Cho, K.; Sontag, D.; and Liu, Y.
2018. Recurrent neural networks for multivariate time series
with missing values. Scientific reports, 8(1): 6085.
Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duve-
naud, D. K. 2018. Neural Ordinary Differential Equations.
In Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc.
Connor, J. T.; Martin, R. D.; and Atlas, L. E. 1994. Recur-
rent neural networks and robust time series prediction. IEEE
transactions on neural networks, 5(2): 240–254.



Hewamalage, H.; Bergmeir, C.; and Bandara, K. 2021. Re-
current neural networks for time series forecasting: Current
status and future directions. International Journal of Fore-
casting, 37(1): 388–427.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-term
Memory. Neural computation, 9: 1735–80.
Hornik, K.; Stinchcombe, M.; and White, H. 1989. Multi-
layer Feedforward Networks Are Universal Approximators.
Neural Networks, 2(5): 359–366.
Nelson, R. A.; and Olsson, M. G. 1986. The Pendu-
lum—Rich Physics from a Simple System. American Jour-
nal of Physics, 54(2): 112–121.
Norman, M. R.; Bader, D. A.; Eldred, C.; Hannah, W. M.;
Hillman, B. R.; Jones, C. R.; Lee, J. M.; Leung, L. R.;
Lyngaas, I.; Pressel, K. G.; Sreepathi, S.; Taylor, M. A.;
and Yuan, X. 2021. Unprecedented cloud resolution in a
GPU-enabled full-physics atmospheric climate simulation
on OLCF’s summit supercomputer. International Journal of
High Performance Computing Applications, 36(1): 93–105.
Wyngaard, J. C. 1992. Atmospheric turbulence. Annual Re-
view of Fluid Mechanics, 24(1): 205–234.
Yu, Y.; Si, X.; Hu, C.; and Zhang, J. 2019. A review of recur-
rent neural networks: LSTM cells and network architectures.
Neural computation, 31(7): 1235–1270.


