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Abstract

In the field of molecular science, artificial intelligence (AI),
especially deep learning models like Graph Neural Networks
(GNNs), has shown remarkable effectiveness in predicting
molecular properties. However, their ability to facilitate novel
scientific breakthroughs is often limited by the lack of ex-
plainability. This paper introduces an innovative approach
for explainable concept learning via Large Language Mod-
els (LLMs) to overcome this limitation. Our method lever-
ages LLMs, such as GPT and Claude, for automated molec-
ular concept generation and value assignment. Our frame-
work streamlines the concept learning process by eliminat-
ing the need for predefined concepts and concept labels in
regular concept-based methods. Our iterative refinement step
also greatly enhances explainability by providing concepts
with improved qualities. Through experiments on Molecu-
leNet datasets for molecule property prediction, we demon-
strate that concepts learned with our framework can achieve
accuracy comparable to advanced GNNs even with only sim-
ple models. We also propose future work directions to learn
better concepts via function generation with LLMs and do-
main knowledge incorporation. 1

Introduction
Artificial intelligence (AI) has been a driving force behind
several groundbreaking scientific discoveries, particularly in
the domain of molecular science. A prime example is the
utilization of deep learning by the MIT Jameel Clinic, lead-
ing to the identification of halicin – the first antibiotic dis-
covered in three decades that is effective against a broad
spectrum of 35 bacteria (Stokes et al. 2020). In molecular
science, AI models like Graph Neural Networks (GNNs)
have also shown promising capabilities for learning complex
atomic structures and making accurate predictions of molec-
ular properties (Wu et al. 2018). However, a major challenge
with these advanced AI models, particularly deep learning-
based models like GNNs, is their lack of explainability.
While these models are powerful in terms of their predictive
capabilities, they are often applied as “black boxes”, offering
only limited insight into how their predictions are derived.
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This lack of explainability can be a significant hurdle in
fields where understanding the prediction process is crucial,
like in molecular science, a prediction process could have
profound implications in new scientific discoveries. Conse-
quently, there is a growing need for the development of ex-
plainable AI (XAI) methods in molecular science.

Concept-based models emerge as a promising XAI so-
lution in this context (Koh et al. 2020). Instead of directly
making predictions like other black-box deep-learning mod-
els, concept-based models first produce human-interpretable
concepts from the data, and then make predictions from
these concepts. This approach is especially beneficial for
AI models applied to science problems, because it trans-
lates non-explainable vector representations in general deep-
learning models into meaningful concepts domain experts
can work with, increasing the chance of new scientific dis-
coveries. However, current concept-based models have not
provided a perfect solution on molecule problems. Popu-
lar works like Concept Bottleneck Models (CBMs) (Koh
et al. 2020), though effective for certain tasks, requires pre-
defined concepts and training dataset with concept labels,
which limits their flexibility. Follow up work like the label-
free CBM (Oikarinen et al. 2023) tries to bypass the need for
predefined concepts and labels by automatic concept gener-
ation, but their primarily focus on vision tasks and the con-
cepts are often only qualitative, e.g., color of a fruit. In con-
trast, the desired concepts for molecules can be more quan-
titative, e.g., number of aromatic rings. The concept-based
XAI has also been combined with GNNs on molecule data.
They employ neuron-level grouping algorithms in activa-
tion layers to discern subgraphs as concepts (Magister et al.
2021, 2022; Xuanyuan et al. 2023). This approach, while
innovative, cannot capture concepts beyond subgraphs, and
some interpretation of subgraph concepts can be ad hoc.

In response to these challenges, our approach innovates
by leveraging the capabilities of Large Language Models
(LLMs) like GPT (Brown et al. 2020) and Claude (Bai et al.
2022) for automated, extensive concept generation and value
assignment. We show that with proper prompts and itera-
tive refinements, concepts and their grounded values gener-
ated by LLMs can actually be leveraged to achieve surpris-
ingly good performance for predicting molecule properties
using simple explainable models. The underlying intuition
is founded on the idea that LLMs can be treated as exten-



Figure 1: The concept learning framework with direct value assignment.

sive and integrated knowledge bases. Generating concepts
from LLMs obviates the necessity for gathering informa-
tion from various, often fragmentary, knowledge sources.
Instead, our concept-learning framework is streamlined to
a single, comprehensive interaction with LLMs, minimizing
human error and bias for concept labeling and enhancing
the efficiency and coherence of the concept learning pro-
cess. Similarly to how Snorkel AI (Ratner et al. 2017) uti-
lizes expert-derived rules to automate and enhance data la-
beling, our approach leverages LLMs to automate molecu-
lar concepts generation and value assignment. These con-
cepts and their corresponding values form the foundation of
our model’s predictive capabilities and provide explanations
that match domain knowledge. As verified by our experi-
ments on MoleculeNet (Wu et al. 2018) datasets like Free-
Solv and ESOL, our framework can match the performance
of established GNN baselines for molecule property predic-
tion while significantly enhancing explainability. This marks
a notable advancement in molecular concept learning and
points out a new direction of LLM-driven XAI for science.
As a summarization, our contribution includes:

1. Automatic Concept Generation and Value Assign-
ment: We propose an automated framework that lever-
ages LLMs for concept generation and value assignment
for molecules, which streamlines flexible concept learn-
ing and avoids concept labels in standard concept-based
models.

2. Accuracy and Explainability: Our method produces
lists of meaningful and explainable molecular concepts.
Applying only simple models on these concepts achieves
accuracy on par with powerful black-box GNNs.

3. Exploration of LLM-driven XAI: Our work highlights
the potential of LLMs in addressing complex problems
in molecular science and beyond. We introduce a novel
perspective in concept learning, paving the way for fu-
ture research that could further harness the capabilities
of LLMs in scientific domains.

Related work
Predefined Concept Models: A paradigmatic example of
models relying on predefined concepts is the Concept Bot-

tleneck Model (CBM) (Koh et al. 2020). In CBMs, pre-
dictions are made through an intermediate layer of human-
specified concepts, such as ’bone spurs’ in medical imaging
or ’wing color’ in bird identification. This method enables
interventions on the model’s concept predictions, thereby
improving accuracy and allowing for high-level concept-
based interpretations. While CBMs offer structured, trans-
parent decision-making, they are often constrained by the
predefined nature of concepts, potentially limiting adapt-
ability and application breadth. Moreover, CBMs have been
shown to achieve competitive task accuracies comparable
to standard end-to-end models, underscoring their utility in
fields requiring interpretable models. Besides, there are sev-
eral CBMs targeting particular tasks (De Fauw et al. 2018;
Yi et al. 2018; Bucher, Herbin, and Jurie 2019; Losch, Fritz,
and Schiele 2019; Chen, Bei, and Rudin 2020)

Automated Concept Generation Models: Advancing
beyond predefined concepts, this approach employs Large
Language Models for dynamic concept generation. A semi-
nal work in this domain is the Label-free Concept Bottleneck
Model (Oikarinen et al. 2023). Unlike traditional CBMs, this
model automatically identifies and labels concepts directly
from data, using GPT-3 for concept set creation and CLIP-
Dissect for interpretability in image recognition tasks. This
framework is scalable, efficient, and requires minimal hu-
man effort, marking a significant step towards flexible, AI-
driven concept discovery. However, its primary application
has been in the visual domain, indicating room for explo-
ration in other data types like molecular structures.

Concept Learning in Graphs/Molecules: This area ex-
plores concept learning within the complex structure of
graph data, particularly in molecular studies. The evolution
of methods in this field has seen significant advancements.
Starting with GCExplainer (Magister et al. 2021), which in-
troduced human-in-the-loop approaches for concept-based
explanations in graph neural networks, subsequent works
have refined this idea (Magister et al. 2022) (Xuanyuan et al.
2023). They progressed from using k-means clustering to
more sophisticated similarity scoring algorithms in neuron-
level grouping within activation layers. These methods ex-
emplify the attempt to extract and interpret salient features
in graph data, yet they often face challenges in fully captur-



FreeSolv ESOL
Features None Reg Add None Reg Add

GIN - 2.307 2.151 - 1.026 0.998
GCN - 2.413 2.186 - 1.143 1.015
RDKit 3.124 2.887 2.634 1.408 1.182 1.192

GPT-3.5 turbo 2.520 2.546 2.285 1.253 1.154 1.153
Claude 2 2.205 2.084 2.027 1.290 1.140 1.120

Table 1: Regression RMSE on test set (smaller is better).

ing the nuanced complexity of molecular structures.

Method
In this section, we introduce our method for utilizing LLMs
to learn meaningful molecular concepts. Our framework
capitalizes on the capabilities of LLMs for the automated
generation and value assignment of concepts in molecular
science. The steps are depicted in Figure 1 and outlined in
the following steps.

Step 1: Concept Generation Given a particular task on
molecules, we first prompt LLMs to propose a diverse list
of concepts that are potentially relevant to the task. This
step functions like an extensive brainstorming session. Con-
cepts range from general attributes like “Molecular Weight”
to specific ones such as “Polar Surface Area” (PSA). The
LLMs’ capacity to comprehend and generate complex con-
cepts is pivotal in this phase, yielding a wide spectrum of
potentially relevant concepts for our analysis.

Step 2: Automated Value Assignment Following the
concept generation, we proceed to value assignment. In this
step, the LLMs directly assign numerical values to the gen-
erated concepts. This automation bypasses traditional, labor-
intensive methods, reducing susceptibility to human error
and bias, and is crucial for efficiently processing the large
volumes of data encountered in molecular studies.

Step 3: Model Fitting and Concept Selection With con-
cepts and their values at hand, we move on to integrate these
concepts into simple, explainable models like logistic and
linear regression. This step includes fitting the concept val-
ues as features in the model and applying the Akaike Infor-
mation Criterion (AIC) (Akaike 1973, 1974) to identify the
most effective subset of concepts.

Iterative Concepts Refinement We do an iterative refine-
ment of the learned concepts by prompting LLMs again with
the empirical performance of our simple model and the fea-
ture selection results from step 3. Including such information
in an updated prompt allows LLMs to generate new concepts
to replace the less useful ones from the previous iteration,
ensuring that our model remains adaptable and up-to-date
with the most relevant molecular features.

A potential improvement of the framework is to update
step 2 to value assignment through function generation,
which we discuss in the future work section.

Experiments
Datasets We use two regression molecule datasets from
MoleculeNet, a benchmark suite for molecular machine

Figure 2: Prediction RMSEs get better over three iterations.
The blue line is for FreeSolv using GPT-3.5 Turbo, and the
yellow line is for ESOL using Claude 2.

learning (Wu et al. 2018). FreeSolv provides hydration free
energy data for 642 molecules, while ESOL contains wa-
ter solubility data for 1128 organic small molecules. We
employed the same data splits as used in the Open Graph
Benchmark (OGB) (Hu et al. 2020). Results are measured
with Root Mean Square Error (RMSE). For dataset has three
versions. 1) No node/edge features 2) Regular node feature
(2 dim) and edge features (2 dim) 3) Additional node feature
(9 dim) and edge features (3 dim).

Baselines We consider three baseline models, including
two GNNs used in OGB benchmark: Graph Isomorphism
Network (GIN) and Graph Convolutional Network (GCN),
which provides a well-established standard and represents
the state-of-the-art in the field. Note that GNNs can only
work when the node/edge features are provided Addi-
tionally, we include a baseline linear model utilizing five
molecule properties that can be precisely generated with
RDKit (Landrum 2010) as features, which represents a more
traditional feature-engineering approach.

Experiment Setting We use GPT-3.5 turbo and Claude 2
as our backbone LLMs for concept generation and value as-
signment. After collecting the concept values, we use them
to predict the labels using linear regression models, im-
plemented with the scikit-learn package (Pedregosa et al.
2011). Our method can run without relying on the provided
node/edge features (the first column for each dataset in Ta-
ble 1). For a fair comparison with GNNs, we also consider
summing the node/edge features into graph-level features
and adding them as input to the linear regression model.
Since this will greatly increase the feature dimension, we
apply a LASSO regression with a regularizing coefficient
chosen from [0.01, 0.1, 1]. We then report the best model,
where the best alpha is 0.1 for FreeSolv and 0.01 for ESOL.

Molecule Property Prediction The results in Table 1
compare our approach against the baselines. For the Free-
Solv dataset, our method with either GPT-3.5 turbo and
Claude 2 achieves competitive RMSE scores to GNN mod-



Dataset LLM Molecular Weight Number of Rings Polar Surface Area Lipophilicity Number of Rotatable Bonds

FreeSolv GPT-3.5 turbo 0.914 0.645 0.633 0.161 0.549
FreeSolv Claude 2 0.924 0.875 0.540 0.766 0.377
ESOL GPT-3.5 turbo 0.832 0.462 0.519 0.692 0.491
ESOL Claude 2 0.841 0.518 0.525 0.679 0.381

Table 2: RDKit benchmarking results measured in R2 (ranging from 0 to 1, higher the better).

ESOL FreeSolv

* Polar surface area * refractivity
* Number of aromatic rings * polar surface area
* Presence of charged groups * heavy atom count
* Octanol-water partition coefficient * ring count
* Melting point * aromatic ring count
* Polarity
* Hydration energy
* Lipophilicity

Table 3: Learned concepts by our framework with Claude 2.

els and outperforms the RDKit baseline, respectively. In par-
ticular, our results with Claude 2 achieve the best among all
methods across three settings. For the ESOL dataset with
features, our results are not as good as GNNs, but the differ-
ence is small We hypothesize the results are affected by the
direct value assignment being not perfectly accurate, as we
checked with RDKik benchmarking in the next part. Also,
summing node/edge features into graph-level features is a
rough way of incorporating them. By employing the func-
tion value assignment idea discussed in future work, the re-
sults have room for improvement. We also show in Figure 2
that the prediction gets better as we run more iterations.

Benchmarking Concept Values with RDKit The con-
cept value assignment from step 2 is crucial for our method.
To evaluate its accuracy and reliability, we use RDKit to
benchmark the assigned values by LLMs. This is partic-
ularly pertinent for concepts where RDKit can calculate
ground-truth values for some molecular properties, such as
Molecular Weight and Polar Surface Area. We compare
these ground-truth values with those derived from our mod-
els using R-square (R2). This helps us to better understand
how accurate the generated concepts are. The RDKit bench-
marking, as shown in Table 2, reveals the correlation be-
tween our model’s concept values and RDKit’s ground-truth
values. The R-square values across FreeSolv and ESOL
datasets indicate an acceptable level of accuracy, especially
for concepts like Molecular Weight and Polar Surface Area.
These findings affirm the viability of our approach in gener-
ating concept values, and at the same time point to potential
directions for improvement on concepts with lower correla-
tion scores. We discuss such improvements in future work.

Concept Interpretation The learned concepts of our
method are shown in Table 3. The selection of refractivity,
polar surface area, heavy atom count, ring count, and aro-
matic ring count as essential factors for the FreeSolv dataset
is consistent with their influence on hydration free energy.
Refractivity, indicating how light interacts with molecules

in water (Foerst et al. 1967), and polar surface area, corre-
lating directly with solubility (Pajouhesh and Lenz 2005),
are pivotal in understanding molecular behavior in aqueous
environments. Heavy atom count, a proxy for molecular size
and complexity, influences how molecules interact with wa-
ter (Sheridan et al. 2014). Additionally, ring and aromatic
ring counts, highlighting structural rigidity and electronic
properties, are significant for predicting a molecule’s behav-
ior in water (Ritchie and Macdonald 2009).

For the ESOL dataset, which focuses on water solubility
data, the selected features are highly pertinent. Polar sur-
face area and the number of aromatic rings are critical in in-
fluencing a molecule’s solubility and interaction with water
(Pajouhesh and Lenz 2005). The presence of charged groups
is vital in solubility determination in polar solvents like wa-
ter due to their strong interactions with water molecules
(Burke 1984). Moreover, the octanol-water partition coeffi-
cient directly reflects a molecule’s hydrophobicity and thus
its solubility in water (Sangster 1997).

Future work
Value Assignment Through Function Generation As di-
rect value assignment for concepts can be challenging for
LLMs in some cases, we also introduce a variant of our
method with an updated step 2 for value assignment through
function generation. The idea is shown in Figure 3 in Ap-
pendix, where we prompt LLMs to generate Python func-
tions fi for each concept generated in step 1. Then we com-
pute the concept values by plug in molecule graphs Gj into
the each function. There are two advantages for function
generation compared to direct value assignment. One is that
functions allow a better usage of the available molecule in-
formation, like the molecule structure in terms of a graph
adjacency matrix and atom and bond information in terms
of node and edge features. In contrast to text information
like molecule names, such matrices and numeric values are
hard to be processed by LLMs directly. The second advan-
tage is that for some concepts, especially quantitative ones
like molecular weight, functions can compute their values
more precisely, avoid errors in direct value assignment.

Concept Refinement with Domain knowledge In our ex-
periments, Claude 2 suggested “pKa” as a relevant concept
for the ESOL dataset. However, pKa is a property specific to
acidic compounds, and not all compounds in ESOL possess
this attribute. This led to a limitation where LLMs strug-
gled to assign pKa values universally across the dataset.
This highlights a current constraint in our model’s ability
to discern applicability of certain properties to specific com-
pounds. On the other hand, this shows the potential to fur-



ther improve the performance of our method by employing
domain knowledge.
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Appendix



Figure 3: The concepts learning framework with value assignment through functions generation, which allows us to include
more information of molecule graphs.

Figure 4: Prompts for concept generation and value assignment with Claude 2.



Figure 5: Enter Caption


