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Abstract
This paper investigates the impact of observations on atmo-
spheric state estimation in weather forecasting systems using
graph neural networks (GNNs) and explainability methods.
We integrate observation and Numerical Weather Prediction
(NWP) points into a meteorological graph, extracting 𝑘-hop
subgraphs centered on NWP points. Self-supervised GNNs
are employed to estimate the atmospheric state by aggregat-
ing data within these 𝑘-hop radii. The study applies gradient-
based explainability methods to quantify the significance of
different observations in the estimation process. Evaluated
with data from 11 satellite and land-based observations, the
results highlight the effectiveness of visualizing the impor-
tance of observation types, enhancing the understanding and
optimization of observational data in weather forecasting.

Introduction
Weather forecasting, a critical component in industries like
transportation and manufacturing, relies heavily on Numer-
ical Weather Prediction (NWP) systems, which are based
on 3D physical models and dynamical equations (Štulec,
Petljak, and Naletina 2019; Kotsuki, Kurosawa, and Miyoshi
2019). For NWP systems to predict future atmospheric states
effectively, they require accurate current atmospheric states
as initial values. This necessity underscores the importance
of a data assimilation (DA) system, which approximates the
true atmospheric states by merging observations with predic-
tion results from dynamical models (Kwon et al. 2018). The
integration of a wide range of observations, from sources like
aircraft, radiosondes, and satellites, is crucial for enhancing
the DA system’s accuracy (Kang et al. 2018).

Traditional methods to assess the impact of observations
on weather forecasts include forecast sensitivity to observa-
tion (FSO) and its variations, such as ensemble FSO and
hybrid FSO (Kotsuki, Kurosawa, and Miyoshi 2019; Kalnay
et al. 2012; Buehner, Du, and Bédard 2018). These methods
compute the gradient of the forecast with respect to the as-
similated observations within the DA system but are limited
by their dependency on the system’s structural changes.

Our study proposes a novel approach using Graph Neural
Networks (GNNs) (Jeon and Jung 2021; Hoang et al. 2023;
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Lee, Jeon, and Jung 2021) to estimate the impact of obser-
vations independently of the system’s structure. GNNs have
been increasingly employed in meteorological predictions,
including solar radiation and sea surface temperature pre-
dictions, by capturing variable interactions in neighboring
regions (Jeon, Choi, and Lee 2022; Ma et al. 2023; Yang
et al. 2018). The GraphCast (Lam et al. 2023) model, for
instance, transforms the NWP system’s 3D grid into a hierar-
chical graph to capture long-range spatial interactions using
GNNs. However, it does not incorporate the latest observa-
tions in its predictive model. To our knowledge, no existing
model fuses observations with NWP grids in a graph format
for current atmospheric state estimation using GNNs.

Additionally, we apply explainability methods to evaluate
the impact of observations on current atmospheric state esti-
mation (Yuan et al. 2023). These methods, including model
gradient analysis and input perturbation, have been previ-
ously used for validating deep learning models in Earth sys-
tem science (Pope et al. 2019; Ying et al. 2019; Vu and Thai
2020; Irvine et al. 2011). Our study extends the use of these
methods to feature analysis in atmospheric science, providing
a novel perspective.

The contributions of this paper include:
• Defining a meteorological graph that includes real at-

mospheric state and observational data, addressing the
challenge of unstructured data.

• Developing a self-supervised graph convolutional net-
work (GCN) model for atmospheric state estimation,
demonstrating superior performance over other baseline
models.

• Using explainability methods to estimate and visually rep-
resent the impact of observations on accurate atmospheric
state predictions.

Atmospheric State Estimation
Composing Meteorological Contexts
Weather forecasting heavily relies on both local and global
weather conditions, but estimation of the current atmospheric
state is predominantly influenced by nearby observations. In
the Korean Integrated Model (KIM), observations impact
NWP grid points within a 50km radius. This study treats
atmospheric state estimation as a node-level regression task,



aiming to estimate the states of NWP grid points at time 𝑡 us-
ing data from NWP grid points at time 𝑡−1 and observations
at time 𝑡.

A meteorological graph,N = (𝑉, 𝐸, 𝜆𝑣), was constructed,
comprising observation points and NWP grid points as
nodes, where 𝑉 ∋ 𝑣𝑖 represents the nodes, 𝐸 the edges,
and 𝜆𝑣 a function mapping nodes to their types. Adjacency
between nodes is determined by a 50km radius proximity.

In this graph N , various weather variables are assigned
as node attributes 𝑎𝑖 to each node 𝑣𝑖 . The type and quantity
of these variables differ based on node types (observation or
NWP points) and observation types (e.g., IASI, GK2A, etc.).
To standardize different feature vector sizes, a projection
layer 𝑝(N , 𝑣𝑖)𝜆𝑣

maps each node 𝑣𝑖 to a fixed size vector
ℎ𝑖 ∈ R𝑑 , with 𝑑 being the embedding dimension.

Given the extensive scale of the 3D NWP grid points,
which are uniformly distributed across the globe at 50km in-
tervals, the meteorological graph is large, posing challenges
for GNNs application. In addition, local observations have
more influence on the estimation of the atmospheric state
than the broader global weather context. Therefore, the study
extracts ego-centric subgraphs centered on NWP points from
the main graph. Each subgraph 𝑔𝑚 (𝑣𝑖) comprises 𝑘-hop
neighbors of 𝑣𝑖 and their interconnecting edges. Utilizing
these subgraphs as individual samples, we effectively aggre-
gate local weather contextual information within the 𝑘-hop
range. This approach allows for the application of GNNs to
atmospheric state estimation while managing computational
costs.

Pre-training with Node Feature Reconstruction
Observational data in meteorology, such as temperature,
can have varying implications depending on the surround-
ing weather conditions. For instance, a temperature of 305K
might signify different things in tropical regions compared
to mid-latitude areas. To interpret these variations, GCNs
are pre-trained on a node attribute reconstruction task. This
process enables the determination of the specific meanings
of observations in diverse meteorological contexts.

The GCN-based graph encoder takes a meteorological
context subgraph with node initial feature vectors (ℎ𝑖) passed
through the projection layer and composes final vector repre-
sentations of nodes (𝐻𝑖). This pre-training phase involves
training node representations in meteorological contexts
alongside the attribute reconstruction task. The graph en-
coder, utilizing GCN layers, concurrently learns node fea-
tures and graph structures. The graph encoder is formulated
as:

𝐻 (𝑙+1) = 𝜎(𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 𝐻 (𝑙)𝑊 (𝑙) ), (1)

where 𝑊 (𝑙) indicates a weight matrix in 𝑙𝑡ℎ layer, 𝐻 (𝑙) is
the feature matrix generated by the 𝑙𝑡ℎ layer. In addition,
𝐷̃𝑖𝑖 =

∑
𝑗 𝐴̃𝑖 𝑗 , and 𝐴̃ = 𝐴 + 𝐼𝑁 is the adjacency matrix of the

context subgraph 𝑔𝑚, where 𝐼𝑁 indicates the identity matrix.
Also, 𝐻 (0) is the set of ℎ𝑖 .

The objective of this pre-training is to approximate the re-
constructed node attributes to the actual attributes as closely
as possible, minimizing reconstruction error. This error is

quantified using the L2 loss, with the objective function de-
fined as:

𝐿𝑠𝑠𝑙 = ∥𝑎, 𝑎̂∥2
2 + 𝜓∥𝑊 ∥2

2, (2)

where 𝑎 and 𝑎̂ are the actual and predicted node attributes,
respectively, and 𝜓 is a weight for the regularization term.

Estimating Current Atmospheric States
In our approach to atmospheric state estimation, node rep-
resentations from the graph encoder are transformed into
representations of ego-centric subgraphs through graph pool-
ing. Subsequently, a Multi-Layer Perceptron (MLP) is em-
ployed to estimate the current atmospheric states of the cen-
tral nodes, which are NWP points, based on these subgraph
representations. This process can be formulated as:

𝑍 = MLP(POOL(𝐻 (𝑛) )), (3)

where 𝐻 (𝑛) = GCN(ℎ, 𝐴) is the final node representations
from the GCN layers. POOL(·) indicates the graph pooling
layer, which conducts average pooling for node represen-
tations in context subgraphs. Thereby, subgraph representa-
tions reflect weather context within the 𝑘-hop radius of NWP
points. Finally, the MLP(·) layer maps high dimensional sub-
graph representations to the weather variables and predicts
the current conditions.

The objective of the fine-tuning is to accurately predict the
current atmospheric states, aligning them as closely as pos-
sible with their actual values. During training, the regression
errors over all subgraphs and weather variables are computed
using the L2 loss, which is defined as:

𝐿𝑟𝑒𝑔 = ∥𝑍, 𝑍̂ ∥2
2 + 𝜓∥𝑊 ∥2

2, (4)

where 𝑍 and 𝑍̂ are the true and predicted atmospheric states,
respectively.

Observation Impact Analysis
Estimating the impact of observations in meteorology in-
volves understanding the contribution of a node 𝑣 𝑗 within a
weather context 𝑔𝑚 (𝑣𝑖) to the predicted atmospheric states
𝑍̂ . The sensitivity of node 𝑣 𝑗 to the prediction 𝑍̂𝑔𝑚 (𝑣𝑖 ) , repre-
sented as 𝑆𝑖, 𝑗 (𝐻 (𝑛)

𝑗
, 𝑍̂𝑔𝑚 (𝑣𝑖 ) ), is used to estimate this impact.

The overall importance of observation 𝑣 𝑗 in the meteoro-
logical graph N is then calculated by averaging sensitivities
across different subgraphs:

𝑆 𝑗 =
1
𝑖

∑︁
𝑖

𝑆𝑖, 𝑗 . (5)

This approach allows us to aggregate the importance of each
observation type, thereby determining the impact of each
observation type on estimating atmospheric states.

To quantitatively measure the impact, we use gradients
from the prediction model, commonly applied in graph rea-
soning. Three methods are used to provide explanations
based on the gradients and are empirically compared. The
contrastive gradient-based saliency map (SA) (Pope et al.
2019) utilizes these gradients to indicate how changes in



the input could lead to variations in the output. This can be
formulated as:

𝐿𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 = ReLU
(

𝜕𝑍̂

𝜕𝐻 (𝑛)

)
. (6)

Additionally, the Grad-CAM method (Pope et al. 2019)
focuses on the last graph convolutional layers rather than
the input space, identifying node importance using back-
propagation gradients. This method computes weights 𝛼𝑛 as
the average of the gradients and represents node importance
as a weighted sum of feature maps:

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀 = ReLU

(∑︁
𝑛

𝛼𝑛𝐻
(𝑛)

)
. (7)

Layer-wise Relevance Propagation (LRP) (Baldassarre
and Azizpour 2019) provides another perspective by reverse-
propagating the prediction from the output of the graph con-
volutional layers back to the input features. It decomposes the
prediction score into neuron importance scores based on hid-
den features and weights. The relevance score propagation at
the neuron level is given by:

𝑅𝑎 =
∑︁
𝑏

ℎ
(𝑛)
𝑎 𝑤𝑎𝑏∑

𝑘 ℎ
(𝑛)
𝑘

𝑤𝑘𝑏

𝑅𝑏, (8)

where ℎ
(𝑛)
𝑎 is the activation of the 𝑎𝑡ℎ hidden neuron in the

𝑛𝑡ℎ layer, and 𝑤𝑎𝑏 is the weight connecting the 𝑎𝑡ℎ neuron
to the 𝑏𝑡ℎ neuron. This method intuitively assigns a larger
fraction of the target neuron score to neurons contributing
more significantly to the target neuron activation.

Experimental Results and Discussion
In this section, we validate the proposed atmospheric state
estimation system and visualize the importance of observa-
tion. We collected observation data and KIM data used in
the Korea Meteorological Administration (KMA). We used
the output (i.e., u-component of wind (U), v-component of
wind (V), temperature (T), relative humidity (Q)) of the DA
system as the true value since the output was assumed to be
the actual atmospheric state in the NWP system. Also, the
observations were preprocessed by the KMA system. AIR-
CRAFT (U, V, T), GPSRO (banding angle (BA)), SONDE
(U, V, T, Q), AMV (brightness temperature (TB)), AMSU-A
(TB), AMSR2 (TB), ATMS (TB), CrIS (TB), GK2A (TB),
IASI (TB), and MHS (TB), a total of 11 satellite and ground
observations (Kang et al. 2018) that have different variables
(U, V, T, Q, TB, and BA) were used in the experiment. We
have restricted the region to 500 hPa over East Asia. The
observation and NWP data (20 April 2021 to 30 April 2021)
were used as the training dataset. We then evaluated the pro-
posed model using the next ten days (1 May 2021 to 10 May
2021).

Effectiveness of the Proposed Estimation Model
To explore the contribution of the graph-based data structure,
we first compare the prediction performance of our model
with fully connected networks (FCN). In addition, we also

Model Variables 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑅2 𝑣𝑎𝑟

FCN

U(m/s) 0.20 0.17 0.60 0.60
V(m/s) 0.13 0.11 0.34 0.34
T(K) 0.23 0.20 0.83 0.83
Q(kg/kg) 0.07 0.07 0.37 0.37

GCN

U(m/s) 0.20 0.17 0.64 0.64
V(m/s) 0.10 0.07 0.56 0.56
T(K) 0.22 0.20 0.88 0.88
Q(kg/kg) 0.05 0.05 0.53 0.53

GAT

U(m/s) 0.18 0.16 0.67 0.67
V(m/s) 0.10 0.07 0.56 0.56
T(K) 0.22 0.19 0.88 0.88
Q(kg/kg) 0.04 0.04 0.56 0.56

Proposed
w/ GCN

U(m/s) 0.16 0.13 0.73 0.74
V(m/s) 0.09 0.06 0.73 0.73
T(K) 0.19 0.16 0.93 0.93
Q(kg/kg) 0.03 0.03 0.64 0.64

Proposed
w/ GAT

U(m/s) 0.17 0.14 0.72 0.72
V(m/s) 0.09 0.07 0.71 0.72
T(K) 0.20 0.18 0.90 0.90
Q(kg/kg) 0.04 0.04 0.62 0.62

Table 1: A performance comparison of the proposed model
with the baseline models.

evaluate the influence of the self-supervised learning and
attention mechanisms through ablation tests.

In Table 1, GCN, Graph Attention Network (GAT), and the
proposed models have higher accuracy than the FCN model
for all evaluation metrics which are widely used in the previ-
ous study (Jeon, Choi, and Lee 2022). Among the evaluation
metrics, the accuracy of 𝑣𝑎𝑟 and 𝑅2 show similar results, but
they are calculated with different variances. Therefore, if the
two values are the same, we can assess that the error of the
model is unbiased. We have verified that graph-structured
meteorological data can improve the performance of current
atmospheric state prediction. The proposed model based on
self-supervised learning achieved significantly better perfor-
mance than GCN and GAT. A node representation that has
been pre-trained on the node feature reconstruction consid-
ering meteorological contexts is more effective in estimating
current atmospheric states than the cases without opportuni-
ties to learn spatial correlations between weather variables. In
particular, the performance of GAT, which considers nodes’
importance based on their attention scores, is slightly bet-
ter than GCN for all meteorological variables. However, the
U and T variables show very small performance deviations.
We assume that for estimating certain weather variables, all
the closely located observations can have uniformly high (or
low) importance.

On the other hand, GCN achieved better performance
than GAT, as the backbone of our model. The proposed
model based on GCN increased the accuracy by 14.06%,
30.36%, 5.68%, and 20.75% over vanilla GCN, while the
proposed model based on GAT increased the accuracy by
7.46%, 26.79%, 2.27%, and 10.71% over vanilla GAT for
each variable, respectively. Pre-training the feature recon-



struction task enables GNN models to understand correla-
tions between weather variables. Then, the accuracy of GCN
could be significantly improved, since GCN models merely
aggregate neighboring nodes’ features with mean aggregator.

Stability of the Explainability Methods
The results of the explainability methods provide insights
into correlations between weather variables in a human-
understandable way. However, it is difficult to evaluate these
methods from this perspective due to the lack of ground
truth and criteria for human understandability. Also, com-
paring different explainability methods requires a lot of time
and human resources to investigate the results for each me-
teorological context subgraph. Therefore, evaluation metrics
should evaluate the results from the perspective of the model,
such as whether the explanations are faithful to the model.
We define 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ as the difference in accuracy obtained
by occluding fixed percentages of input features assessed as
important. In addition, 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− indicates the difference
between the predictions obtained by masking unimportant
input features while retaining the important features. We ap-
plied the explanation method to the proposed model based on
GCN, which has the best performance in atmospheric state
estimation.

Methods 10% 20%
𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦−

SA 0.17 0.09 0.35 0.19
Grad-CAM 0.20 0.08 0.36 0.17

LRP 0.25 0.09 0.39 0.16

Table 2: Fidelity comparisons among explainability methods.

In Table 2, we occlude 10% and 20% of the input fea-
tures and then compare their fidelity scores. In the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+
metric, LRP outperforms the other explainability methods,
showing that the propagation-based technique is more de-
sirable than traditional gradient-based techniques for GNNs.
We can assume that SA and Grad-CAM have not made a
sophisticated transition from the image domain to the graph-
specific design, which is the main reason for their lower
performance than the propagation-based LRP methods. The
𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− scores are similar to the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ results, but the
performance differences between the models are small. For
low importance nodes, all methods perform consistently in
estimating the node importance. When occluding nodes in
the bottom 20% of importance, the 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ score is sig-
nificantly large due to the loss of a large number of nodes.
However, masking nodes in the bottom 10% of importance
does not have a significant impact on accuracy.

As a result, the averaged effect of each type of observa-
tion on the estimation of the current state of the atmosphere
can be visualized as shown in Figure 1. The variation of
importance by the observation type assessed by SA is small
compared to other methods. Node importance is widely dis-
tributed across observation types because the SA method has
explainable noise and poor localization performance (Pope
et al. 2019). The Grad-CAM, with its improved localization

Figure 1: The averaged impact of each observation type.

performance, has the largest variation in importance by ob-
servation type. Therefore, the method has a high potential
for use in cases where 𝑛 observation types with very large
impacts or 𝑛 observation types with very small impacts need
to be selected. Although the LRP method estimates different
degrees of impact for different observation types, the ranking
of importance observation is similar.

(a) SA

(b) Grad-CAM

(c) LRP

Figure 2: Time series of observations impact.

Figure 2 shows the impact by observation type evaluated
for each time period, and observation types with an impor-
tance of 0 are those for which there are no observations
exist in the target region (i.e., East Asia) at that time. The
time series pattern of the impact by observation type eval-
uated by SA and Grad-CAM in Figure 2 does not change
significantly. In addition, compared to the SA method, the
Grad-CAM method assigns relatively greater importance to
high-impact observation types, and the high-impact obser-
vation types are emphasized. The LRP method calculates the
relative importance for each observation type, and the impact



of each observation is evaluated differently for each meteo-
rological context. The property of conservation in the LRP
method is significant in interpreting the physical attributions
in the graph-level prediction task.

Conclusion
In this paper, we propose an atmospheric state estimation
model based on self-supervised graph neural networks. Then,
we applied explainability methods to analyze the impact of
observations on the current atmospheric state and visualize
the importance of observation type.
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Štulec, I.; Petljak, K.; and Naletina, D. 2019. Weather impact
on retail sales: How can weather derivatives help with adverse
weather deviations? Journal of Retailing and Consumer
Services, 49: 1–10.


