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Abstract

Concrete production accounts for about 8-9% of global an-
thropogenic CO2 emissions, and decarbonizing the concrete
industry constitutes a major component of global decar-
bonization efforts. Developing machine learning (ML) mod-
els for concrete property prediction has emerged as a promis-
ing strategy to optimize concrete mix designs, aiming to
minimize CO2 emissions while meeting engineering require-
ments. However, many existing efforts face limitations due to
the lack of scientific consistency and validation on industrial
datasets, hindering the explainability and applicability of re-
sulting ML models. To address this limitation, this work pro-
poses to incorporate domain knowledge into a novel amor-
tized Gaussian process (AGP) architecture to predict con-
crete strength of highly complex industry-adopted concrete
mixes. This domain-informed AGP model not only achieves
high predictive performance (with R2 values of 0.884) but
also significantly enhances model explainability, capturing a
wide range of intricate details of domain knowledge that other
models (including random forest (RF), multi-layer percep-
tron (MLP), and standard GP) fail to grasp. This study high-
lights the power of domain-informed AGP model in concrete
strength prediction, paving the way for reliable mix design of
more sustainable concrete.

Introduction
Concrete industry contributes an estimated 8-9% of global
anthropogenic CO2 emissions (Ellis et al. 2020), making it
one of the largest industrial sources of greenhouse gas emis-
sions. The majority of concrete emissions arise from the pro-
duction of ordinary Portland cement (OPC), the most widely
used binders in concrete. Using supplementary cementitious
materials (SCMs, mostly industrial byproducts), e.g., slag,
fly ash, and silica fume, to partially replace OPC is one of
the most promising strategies to decarbonize concrete indus-
try (IEA 2018). However, the use of SCMs adds complex-
ity to the mix design of concrete, which is already a highly
complex composite material. To enable concrete mix design
for better performance and sustainability, it is necessary to
develop reliable models for predicting important concrete
properties, like strength, based on mix information.

XAI4Sci: Explainable machine learning for sciences, AAAI-24
(xai4sci.github.io)

Past experimental studies have revealed some semi-
quantitative relations between strength and time, and certain
mix features including the water-to-cementitious (W/CM)
ratio (Yeh 2006) (Chidiac, Moutassem, and Mahmoodzadeh
2013). However, these simple empirical functions fail to
account for the intricate connections among a diverse set
of influential factors, resulting in poor predictions for mix
designs beyond the experimental data used for developing
them. In contrast, modern machine learning (ML) methods
excel at capturing complex inter-correlations among numer-
ous features, showing promise in predicting concrete proper-
ties. Although past ML studies have made valuable contribu-
tions to this area, they mostly rely on small lab datasets (gen-
erally < 1000 data points) (Young et al. 2019) (Chaabene,
Flah, and Nehdi 2020) (DeRousseau et al. 2019) (Nunez
et al. 2021) (Li et al. 2022), and lack the incorporation of do-
main knowledge and yield suboptimal performance (R2 <
0.6) on industrial datasets. These limitations impede the ex-
plainability and applicability of the resulting ML models,
thereby hampering the confidence of the inherently conser-
vative concrete industry in these black-box ML models.

To leverage ML for the sustainable transformation of
the concrete industry, the challenge of model explainability
needs attention. In this study, we explored the use of domain-
informed amortized Gaussian process (AGP) models to en-
hance the explainability of ML-based concrete strength pre-
diction, using a large and highly complex industrial dataset.
We focus this work on the modeling of strength develop-
ment instead of other concrete properties, because strength
is the most important and commonly reported engineering
property for concrete mixes (DeRousseau et al. 2019).

Methods
Amortized Gaussian Process (AGP)
To capture the complex relationship between mixture design
and compressive strength, as well as to generate predictive
uncertainty and allow for non-uniform time sampling, we se-
lect Gaussian process (GP) (Rasmussen and Williams 2006)
as the model class for our application. Instead of concatenat-
ing time and mixture constituents as a single input vector for
the GP, we propose the use of amortized Gaussian processes
(AGP). The AGP, described below, allows for the parame-



terization of a function which describes strength as a func-
tion of time. This univariate relationship can be informed
by domain knowledge, as relationships between compres-
sive strength and time are well studied.

The AGP is similar to a standard GP in that it describes
distributions over functions and is fully specified by mean
and covariance functions, m(x) and k(x, x′), respectively.
The primary difference is that the AGP introduces functions
which output the hyperparameters of the GP, thus amortiz-
ing the typical cost of learning. Each compressive strength
trajectory is modeled as y(t) = f(t) + ϵ(t) where y is com-
pressive strength, f is a GP, ϵ is observation noise, and t is
time. The specific mean and covariance functions are

m(t; θ) = θ1 log t+ θ2

k(t, t′; θ) = θ3 exp

(
− (log t− log t′)2

2(θ4)2

)
θi = MLPϕi

(z) ∀i
where z is a vector of concrete constituent amounts, θi are
the GP hyperparameters, and ϕi are the parameters of the
i-th MLP. The choice of a log-linear mean function is mo-
tivated by domain knowledge: this empirical relation be-
tween strength and time for a given sample has been com-
monly used by the concrete research community (Chidiac,
Moutassem, and Mahmoodzadeh 2013). The parameters, ϕ,
are learned using the maximum likelihood objective applied
to a population of concrete samples which is enabled by au-
tomatic differentiation packages.

AGP stands out as a suitable architecture for strength
modeling primarily owing to the seamless alignment be-
tween the time-series nature of strength evolution and the
inherent advantage of GP in time series prediction (Roberts
et al. 2013). Furthermore, the availability of empirical func-
tions for strength-time relation allows incorporation of do-
main knowledge.

We compared the performance of the domain-informed
AGP model against other machine learning models, includ-
ing MLP, RF, standard GP, as well as AGP without the
domain-informed mean functions.

Experimental Setup
Amortized Gaussian Process (AGP): The model is trained
with a learning rate of 0.001, a batch size of 732 (10% of the
training data), and 100 training epochs. For all parameteri-
zation MLPs, we used a 2-layer fully connected MLP with
a hidden size 10. A softplus layer is added for θ1 to enforce
positive strength development over time.
Random Forest (RF): Grid search based on cross valida-
tion is applied to select optimal hyperparameters. The model
with best performance has 1000 regression trees.
Multi-layer Perceptron (MLP): Grid search based on
cross validation is applied. The model with best performance
has 1 hidden layer of size 500, trained with a learning rate
of 0.001 with 200 epochs.
Standard Gaussian Process (GP): An RBF kernel with
white noise is used. No other hyperparameters are required.

Dataset
We perform all modelling using an industrial dataset from a
concrete producer, comprising information on 9151 unique
mixes (with a total of 38019 strength measurements at differ-
ent time points). A total of 19 mix design variables are used
as input features z. The unique mixes are randomly split into
80% training data and 20% testing data.

Model Explainability
We analyzed and compared model explainability through (1)
feature importance analysis; (2) sensitivity analysis

• We applied SHAP analysis (Lundberg and Lee 2017) to
examine the feature importance of the θ2 MLP in AGP,
which corresponds to the 1-day mean strength. In assess-
ing model explainability, we focus on evaluating whether
the developed ML models can identify crucial features
known to impact concrete strength.

• Sensitivity analysis was performed for several important
features by varying its value while keeping the others
constant. This allows us to scrutinize whether the ML-
predicted trends align with domain knowledge.

Results and Discussion
Model performance: The performance of the various mod-
els in predicting concrete strength are compared in Table
1, which shows that the RF model and the AGP with a
domain-informed mean function (as detailed above) demon-
strate superior performance, exhibiting the highest R2 values
(0.884-0.895), along with the lowest RMSE (924-881 psi)
and MAPE (9.6-9.9%), followed by the MLP and standard
GP. All these models are seen to significantly outperform the
baseline AGP model with a simple linear mean function. The
comparison among the GP models demonstrates that despite
GP’s task-agnostic nature, a formulation that incorporates
domain knowledge can significantly improve its predictive
performance. The potential of AGP as a predictive model
within a specific domain can be fully unlocked by using for-
mulations that align with domain understandings, leveraging
its inherent flexibility in function specification.
Feature importance analysis: To assess the ML models’
ability in capturing the impact of individual features on
strength prediction, we have performed SHAP feature im-
portance analysis, with the results for the early-age strength
(1-day) shown in Figure 1. Notably, the SHAP analyis for
the standard GP model demands significantly more compu-
tation time (×50+) than any other model, which presents
a major drawback for practical application. Standard GP is
excluded from SHAP analysis due to this reason together
with its inferior performance (see Table 1). A comparison of
Figure 1 with domain knowledge reveals that the domain-
informed AGP generally outperforms RF and MLP in cap-
turing the impact of individual features. For example, the
AGP results reveal the large positive impact of cement quan-
tities (i.e., cement I&II and cement II) and total HRWR
(high-range water-reducing admixture), and the negative im-
pact of W/CM (water-to-cementitious material) ratio, total
AEA (air-entraining admixture), total fly ash and total slag



Table 1: Comparison of the model performance in predicting concrete strength (based on the testing set), as assessed by R2,
root mean square error (RMSE) and mean absolute percentage error (MAPE).

Model R2 RMSE, psi MAPE, %
AGP (domain-informed mean function) 0.884 924 9.9
Basline AGP (simple linear mean function) 0.668 1566 16.1
Random Forest (RF) 0.895 881 9.6
Multi-layer Perceptron (MLP) 0.877 952 9.9
Standard Gaussian Process (GP) 0.866 993 10.5

Figure 1: SHAP feature importance analysis for the (a) domain-informed Amortized Gaussian Process (AGP), (b) Random
Forest (RF), and (c) Multi-layer Perceptron (MLP) for 1-day concrete strength, based on the 20% testing set. AGP shows better
scientific consistency than RF and MLP, demonstrated by the highlighted features.

content on early-age strength. The scientific mechanisms be-
hind these are well-established. For example,the large posi-
tive impact of cement content on strength is due to its role
as the main reactive component binding sand and rock to-
gether to form concrete (Iyer 2020). Fly ash and slag are
both less reactive than cement, therefore elevating their con-
tent results in diminished early-age strength (Poon, Lam,
and Wong 1999) (Skibsted and Snellings 2019).

In contrast to AGP, the RF and GP models fail to demon-
strate scientific consistency through feature importance. For
RF, features known to be crucial, cement quantity and to-
tal fly ash and slag content, are ranked at moderate to lower
positions on the list, and it’s hard to discern from the distri-
butions whether total fly ash and slag have a positive or neg-
ative impact. For MLP, the total slag and fly ash content are
observed to positively influence 1-day strength, which con-
tradicts established domain knowledge. Overall, the SHAP
analysis suggests that the domain-informed AGP outper-
forms RF and MLP models in scientific consistency.

Local SHAP analysis with the AGP model is visual-
ized for two distinctive data points representing low-strength
mixes (Figure 2 (a)) and high-strength mixes (Figure 2 (b))
respectively, for local inference. Compared to the global
SHAP results shown in Figure 1, the negative impact of high
W/CM on early age strength is notably pronounced for the
low-strength mix, with the absence of cement II and high
range water reducing admixture (HRWR). For high-strength

mixes, on the other hand, the results highlight the impor-
tance of high cement content and HRWR usage along with
low W/CM. Consistent with the distinctive features of differ-
ent SCMs, we also see from high-ranking important features
that the addition of silica fume improves strength signifi-
cantly while high slag content contributes negatively. The
chemical mechanisms underlying these effects are further
elaborated in the following sensitivity analysis.
Sensitivity analysis: To further evaluate the explainability
of the domain-informed AGP model, we have performed
sensitivity analysis on several important features, namely
the percentage of cement replaced by fly ash, slag, and sil-
ica fume, along with the W/CM ratio. The results are pre-
sented in Figure 2, which shows how changes in these mix
design features impact the compressive strength of concrete
at different ages (3-day and 28-day) while keeping the other
features constant. Note that the modelling data set has a
maximum replacement ratio of 40%, 60% and 10% for fly
ash, slag and silica fume, respectively, meaning that predic-
tions beyond those values are extrapolations. A comparison
of the results with domain knowledge clearly reveals that
the the domain-informed AGP model outperforms the RF,
MLP and standard GP models. In the case of fly ash, the
AGP model show that increasing its content in replacement
of OPC leads to a decrease in early-age strength (3-day),
aligning with expectation as fly ash is less reactive than OPC
(Poon, Lam, and Wong 1999). At 28 days, the AGP model



Figure 2: Local SHAP bar plots with AGP model for representative (a) low strength and (b) high strength concrete mixes.

Figure 3: Sensitivity analysis for AGP, RF, MLP, and GP: impact of replacing Ordinary Portland Cement (OPC) by fly ash, slag,
and silica fume, and W/CM ratio on the 3-day and 28-day strengths. AGP results align the best with domain knowledge.

reveals no strength decrease at moderate replacement ratios
(e.g., <∼25%), consistent with domain knowledge. There
is a slow reaction mechanism between fly ash and port-
landite (Ca(OH)2), a reaction product of cement hydration,
forming the strength-giving calcium-silicate hydrate (C-S-
H) gel (Snellings, Mertens, and Elsen 2012). This allows the
strength of the cement-fly ash blends to gradually catch up in
the long term (Bendapudi and Saha 2011). However, when
the content of fly ash is further increased, the 28-day strength
decreases, because reducing cement content beyond a cer-
tain range leads to insufficient portlandite available to react
with fly ash and form the strength-giving C-S-H gel. While
the AGP model adeptly captures the trends, the other three

models largely fail. Notably, the standard GP model fails to
capture the negative impact of fly ash on 3-day strength at
high replacement ratios above 20%. For the 28-day strength,
RF, MLP and standard GP suggest that high replacement ra-
tio above ∼30% leads to similar or higher 28-day strength
than pure OPC, in contrast to domain knowledge.

Slag replacement impacts concrete strength through sim-
ilar reactions to fly ash, except that slag is more reactive
than fly ash and consumes less portlandite due to its higher
Ca content. As a result, a higher replacement ratio can be
achieved for slag without compromising long-term strength
(Skibsted and Snellings 2019). AGP shows that slag content
is inversely correlated with strength at 3-day and positively



Table 2: Log-likelihood from training & testing predictions
(based on probability densities).

Model Training Testing
AGP (domain-informed) 2.176 2.173
RF 3.378 1.525

correlated at 28-day, which aligns with domain knowledge
as more C-S-H gel is formed over time. MLP captures simi-
lar overall trends, while standard GP and RF fail to do so.

Furthermore, silica fume, commonly used to improve
concrete strength (Juneger and Siddique 2015) (Juneger,
Snellings, and Bernal 2019), is known for its beneficial im-
pact by strengthening the weak interface between rock ag-
gregate and cement paste, especially at later ages (Nežerka
et al. 2019). This positive impact on strength is well captured
by the AGP model, but not by the other models.

In addition, only the AGP and MLP models capture the
well-known inverse correlation between W/CM ratio and
strength (Mehta and Monteiro 2014). RF and standard GP
notably fail to extrapolate for W/CM beyond 0.3-0.5.

Overall, the sensitivity analysis demonstrates AGP’s su-
perior capability in capturing trends consistent with domain
knowledge across different features. This is especially note-
worthy given that the right ends of all the plots (and left
end for W/CM) are model extrapolations. In contrast, the
RF model, despite having the highest prediction accuracy
(Table 1), fails to capture much of the domain knowledge
and presents lack of smoothness or extrabolability. Despite
the cross-validation performed for the RF, it inherently fa-
vors fitting to the data sample instead of capturing overall
trends. In our specific context, where the data distributions
of training and testing sets are close to each other, the testing
performance of RF remains unaffected. However, as feature
values deviate further from the majority of training data, the
discontinuity poses challenges for RF to make reasonable
extrapolation. This issue highlights a significant advantage
of AGP for downstream uses, namely the inverse mix design
for creating more sustainable concrete. AGP is well-suited
to handle situations where optimized mixes are expected to
lie far outside the feature value ranges of current industry-
adopted mixes.

Uncertainty quantification: Finally, we compared the pre-
diction uncertainty of the AGP and RF models. Prediction
uncertainty of AGP for any input can be calculated through
a distribution directly specified by the posterior mean and
variance. Meanwhile, likelihood for RF is based on fitting a
Gaussian distribution, where the mean and standard devia-
tion are calculated from predictions of all regression trees.
As shown in Table 2, AGP predictions on the test set has
much higher likelihood than RF. Notably, AGP maintain a
similar level of likelihood for both training and test sets,
while RF suffers a drastic drop. This renders AGP a poten-
tially more calibrated and reliable option than RF for predic-
tions in domains like concrete science.

Conclusion
Development of accurate and explainable machine learn-
ing (ML) models for concrete property prediction is crucial
for leveraging ML for concrete decarbonization. This study
demonstrates that the architecture of amortized Gaussian
process (AGP) allows the incorporation of domain-informed
empirical equations. By incorporating a domain-informed
mean function, the resulting AGP model is shown to exhibit
greater performance than the baseline AGP (based on simple
linear mean function), standard GP and multi-layer percep-
tron (MLP), second only to random forest (RF) by a small
margin. Moreover, AGP provides a win-win outcome of per-
formance and explainability, while RF fails in scientific con-
sistency. SHAP analysis shows that the domain-informed
AGP successfully identifies important features known to
impact concrete strength (either positively or negatively),
while the RF and MLP models fall short. Sensitivity anal-
ysis shows that the domain-informed AGP correctly cap-
tures a range of intricate details on how different supplemen-
tary cementitious materials (SCMs), and water-cementitious
(W/CM) ratio influence concrete strength at both 3 days
and 28 days. AGP also shows to extrapolate reasonably
beyond the feature value range in the original dataset. In
contrast, all the other models fall short in capturing most
details. Hence, this study highlights the potential of us-
ing domain-informed AGP for enhanced explainability in
ML-based concrete strength prediction for complex mixes,
thereby paving the way for its future adoption by the con-
crete industry in the sustainable transition.

Limitations and Future Work
Despite our efforts to account for potential issues, we ac-
knowledge the following limitations in the current work:

• Our AI models and optimization frameworks are based
on concrete strength data, without considering other im-
portant engineering properties.

• The local inference for individual data points remains to
be fully analyzed in further in-depth studies.

• The potential advantages of empolying more explainable
models in downstream applications remain to be fully
demonstrated.

For future works, we anticipate expanding the scope of
our analysis by incorporating other concrete properties, in-
cluding slump and air content, into both predictive model
and explainability analysis. These models will be instru-
mental in addressing property-related constraints in inverse
concrete mix design. The ability of the models to capture
smoothness and extrapolate is anticipated to greatly enhance
the reliability of optimized mixes. As the mixes optimized to
reduce climate impacts are expected to be substantially dif-
ferent from the majority of current industrial data, we also
plan to scrutinize the local feature importance of optimized
mixes to ensure scientific consistency in our findings.
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