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Abstract

The global availability of satellite-derived vegetation indices
allows to efficiently monitor vegetation growth and agricul-
tural activities. Previous generations of satellites were cap-
turing only a limited number of spectral bands, and a few
expert-informed vegetation indices were sufficient to harness
their potential. New generations of multi- and hyperspec-
tral satellites can capture numerous additional spectral bands
which are not yet efficiently exploited by traditional vege-
tation indices. In this work, we propose an explainable-Al-
based framework to select and design suitable vegetation in-
dices for a given downstream application task. The applica-
tion chosen for this work is crop classification. Specifically,
we train a deep network to predict crop types using 10 satel-
lite bands from the Sentinel-2 mission, and use a feature attri-
bution method to identify the most important bands for pre-
dicting each crop. We subsequently select suitable existing
vegetation indices and, if needed, modify them to incorpo-
rate the identified bands. We validate our approach by train-
ing lightweight models using different vegetation indices and
comparing their performance. Our results indicate that mod-
els trained on individual indices achieve comparable results
to the baseline model trained on all bands. Furthermore, the
combination of two indices surpasses the baseline in certain
cases, exhibiting a 3 percentage point improvement in overall
accuracy. Additionally, this combined approach demonstrates
a more substantial advantage for individual crop types.

Introduction

Agricultural activities are a central focus of international
efforts aimed at addressing the zero hunger sustainable de-
velopment goal (Leal Filho et al. 2020). Efficiently manag-
ing natural and human resources in regions suffering from
food insecurity and malnutrition is essential to improve both
nutritional and economic well-being. Ground surveys and
in-situ monitoring of agricultural activities, however, present
challenges due to their elevated cost and restricted spatial
coverage, urging the prioritization of alternative approaches.
Crop type mapping, in particular, plays a crucial role in
downstream tasks such as the monitoring of crop health, the
estimation of yields, understanding the distribution of culti-
vated crops, and identifying gaps concerning population de-
mand.
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Meanwhile, there has been a notable surge in satellite data
availability in recent years, holding promising potential for
agricultural monitoring. Specifically, satellite data, with its
global coverage and high temporal resolution, can be har-
nessed for tasks such as identifying cultivated lands, delin-
eating fields, mapping crop types, and estimating seeding
and harvesting dates, among other agriculture-related tasks.

In recent years, an increasing number of studies have em-
ployed Machine Learning (ML) and Deep Learning (DL)
techniques to harness remote sensing data for addressing
sustainable development goals (Ferreira, Iten, and Silva
2020). While such models are proficient in processing raw
satellite bands, a common data engineering practice in this
field involves the utilization of vegetation indices (VIs). Ra-
tios, differences, and derivatives between reflectance values
from different spectral wavelengths can enhance the spectral
signals associated with vegetation characteristics of interest,
given that the original measurements of spectral reflectance
constitute a mixed signal comprising vegetation canopies,
shadows, soils, and other components present on the land
surface (Zeng et al. 2022). While some VIs, such as the nor-
malized difference vegetation index (NDVI) (Rouse et al.
1974), the enhanced vegetation index (EVI) (Huete et al.
2002), the soil-adjusted vegetation index (SAVI) (Huete
1988), are commonly used for crop monitoring, the selection
of the most suitable vegetation index is not always straight-
forward (Zeng et al. 2022). Instead, the initial step involves
identifying the sensitive wavelengths and corresponding VIs
for their optimal utilization.

An advantage of using DL lies in the model’s inherent
capability to automatically extract crop-related features and
discern interactions between raw bands. To extract scientific
insights encoded in the model, eXplainable Al (XAI) tech-
niques can uncover the inner workings of the model, facil-
itating an understanding of how individual satellite bands
contribute to its predictions (Ras et al. 2022). Regarding
the Sentinel-2 (S2) multispectral instruments in particular,
they stand out as one of the few remote sensors with the ca-
pacity to capture red-edge (RE) wavelengths between 700
and 800nm. Notably, the additional RE bands remain under-
explored for their potential to enhance crop classification
through vegetation indices (Misra, Cawkwell, and Wingler
2020). Furthermore, short-wave infrared (SWIR) bands, typ-
ically used for water monitoring, have also received little at-



tention in exploring their efficacy to track vegetation cover
and its phenology (Misra, Cawkwell, and Wingler 2020).
While some work have already used explainability tech-
niques to identify important bands and time steps for crop
classification based on satellite data (Campos-Taberner et al.
2020; Orynbaikyzy et al. 2020; Xu et al. 2021), none has ex-
ploited this analysis to guide through over a hundred VIs
available in the literature (Xue and Su 2017). In this paper,
we introduce an approach that leverages explainability meth-
ods to identify relevant bands and improve the use of VIs
for crop mapping. The implementation of our approach can
be accessed at https://github.com/DFKI-Earth-And-Space-
Applications/XAI4CM_XAI4Sci_ AAAI2024.

Methodology
Crop Dataset

In Sub-Suharan Africa, extreme food insecurity and mal-
nutrition are prevalent in multiple countries. In this study, we
leverage S2 data from Ghana and South Sudan to address
this task. The datasets were initially published following
their utilization in a semantic segmentation task by Rustow-
icz et al. (2019). The original data contains satellite image
time series captured between January and December 2016
at a 10m resolution, and is labeled with multiple land cover
classes. For our study, we merge the two datasets and retain
only the pixels corresponding to crops. We focus our work
on classes with more than 10,000 labeled pixels: sorghum,
maize, rice, groundnut, soybean, and yam. Table 1 presents
the data distribution in each country. We partition 5% of the
data for validation, ensuring that pixels originating from the
same satellite image patch are exclusively utilized for either
training or validation but not both.

Table 1: Pixel count per crop type.

Crop Total Ghana | S-Sudan
Maize 329.847 | 322.767 7.080
Groundnut | 101.314 | 96.371 4.943
Rice 98.986 93.908 5.078
Soybean 67.638 67.638 -
Sorghum 65.185 8.352 56.833
Yam 22.091 22.091 -

Exploiting spectral attributions

Feature attribution methods are explanation techniques
that provide interpretations for individual predictions. These
methods assign sensitivity or contribution scores to each
input feature, quantifying their relative importance to the
model’s prediction (Lundberg and Lee 2017). In our exper-
iments, we use the Shapley Value Sampling (SVS) to esti-
mate feature attributions (Strumbelj and Kononenko 2010).
SVS is grounded in cooperative game theory, which pro-
vides a solid theoretical foundation, unlike many other meth-
ods (Lundberg and Lee 2017). Its robustness has being quan-
titatively evaluated in the context of a regression task based
on time series of satellite data, and has shown superior sta-
bility against several other techniques (Najjar et al. 2023).

The results of the spectral attribution are used to improve
the selection of VIs for the crop mapping task. We explain
the model trained on multiple bands from the satellite data to
identify the important bands. Subsequently, we use this in-
formation to select VIs that account for these bands, and ad-
just existing indices as needed. The model is then retrained
by replacing the satellite bands with the individual indices
or binary combinations, followed by a re-evaluation of the
model on the validation set.

Experimental setup

We use ten bands from S2 data for our analysis, including
blue (B02), green (B03), red (B04), three RE bands (B0S,
BO06, B07), near-infrared (NIR) (B08), narrow near-infrared
(n-NIR) (B8A), and two SWIR (B11, B12) bands. An addi-
tional channel, indicating the cloud coverage of the image,
is stacked to these bands and used in all our experiments.

Regarding the modeling, we rely on recurrent neural net-
works, which have successfully been used to analyze tem-
poral satellite data (Jia et al. 2017; Sharma, Liu, and Yang
2018; Garnot et al. 2019; Mou, Bruzzone, and Zhu 2018).
We opt for the Gated Recurrent Unit (GRU), introduced in
(Chung et al. 2014), due to its moderate number of param-
eters and its proven effectiveness in remote sensing appli-
cations (Garnot et al. 2019; Interdonato et al. 2019; Mou,
Ghamisi, and Zhu 2017). The time series of each pixel are
pre-padded to a fixed sequence length of 228, to account for
the longest time series in the dataset, before being supplied
to the model pixel-wise.

To handle the unbalanced labels in the data, we use
a weighted sampler during training. This sampler assigns
higher probabilities to small classes over large classes, en-
abling the model to train on a similar number of samples
from each class during each training epoch.

Results
Spectral attributions

We train the GRU-based model using the satellite bands and
present the evaluation results on the validation set in the sec-
ond column of Table 2. This baseline model achieved a score
of 67% on both the overall accuracy (OA) and F1 metrics.
In individual classes, high accuracies of 84% and 86% were
attained for rice and sorghum, respectively, while yam ex-
hibited the lowest score at 27%. This could be attributed to
the relatively small number of pixels in this class. Notably,
the largest two classes did not necessarily exhibit the best
performance, suggesting that the performance gaps are not
solely due to the size of each class.

We interpret the baseline model following the procedure
described in the previous section, and visualize the corre-
sponding results in Figure 1. Starting with the global aver-
age attribution line, SWIR1 and REI rank at the top with
around 20% of the total importance, followed by the red,
SWIR2, n-NIR, and NIR bands, in the descendant order of
their respective importance. The remaining bands exhibit a
less significant importance. Notably, the relatively small im-
portance of the cloud mask across all classes indicates that



Table 2:

Experimental results of all trained models. The best score in each experimental group is in bold.

S2 Single VI Two VIs
S2 X — — — — — — — — — — — —
NDVI — | x - - - - — — | x X X - = = —
nNDVI — — X — — — — — — — — X X
NDRE — — X — — — — X — — X X X —
NDRE2 — — — X — — — — X — — — —
NDRE3 — — — — X — — — — X — — — —
NDMI — — — — — X — — — — X — — X
NDMI2 — — — — — — — X — — — — X — —
OA 0.67 | 0.62 062 0.61 056 051 065 063|064 062 062 067 070 061 0.68
F1 067 | 0.63 062 061 057 052 0.65 064 | 0.65 062 063 067 070 0.62 0.69
Maize 065|066 0.61 065 054 041 062 060 | 0.67 0.60 061 063 070 061 0.66
Groundnut | 0.51 | 045 051 048 045 044 057 050|049 051 057 069 0061 044 0.61
Rice 0.84 | 0.64 0.70 0.62 062 064 073 0.76 | 0.66 0.74 0.66 077 083 071 0.81
Soybean 048 | 049 042 034 038 049 041 050 | 050 037 042 035 038 043 049
Sorghum 0.86 | 0.84 0.84 081 084 083 087 086|085 0.83 082 085 088 0382 0.87
Yam 0.27 | 023 021 023 029 034 038 027 (022 030 023 031 032 033 0.23
0s Table 3: VIs used for crop mapping. R, N, nN, S1, and S2
;Ofghum Zice it zovbean --- Average are the red, NIR, n-NIR, SWIR1, and SWIR2, respectively.
0.4 VI Formula Reference
s NDVI (N -R)/(N +R) Rouse et al.
303 n-NDVI (nN - R)/(nN + R) This paper
% NDRE | (N-RE1)/(N+RE1) | Gitelson and Merzlyak
g A NDRE2 | (N-RE2)/(N + RE2) This paper
go2 /9 NDRE3 | (N-RE3)/(N +RE3) This paper
2 A 7 AN NDMI (N - S1)/(N + S1) Wilson and Sader
os N NDMI2 (N - S2)/(N + S2) This paper
0----4"’ ‘!-"" --------- ) ~~~'o
0.0
PO R A A B nally, the red band is §ensitive to absorbil}g chlorophyll aqd
& @0”’0 S & & & & F Q,w”'% Q&b & the leaves absorb relatively more red than infrared light. This
[

Figure 1: Global and crop-specific spectral attributions of
the model trained on the ten satellite bands.

the model is not biased by this channel for the identification
of any specific crop.

Analyzing the attribution results crop-wise, groundnut
and soybean highly rely on the first RE band, followed by
the red and SWIR1 bands. Sorghum has a similar attribution
pattern. Rice has an additional particular dependence on the
SWIR2 band. Rice and yam identification significantly rely
on the first SWIR band, followed by REL. All the remain-
ing bands have each less than 10% of the total importance.
Maize crop classification is sensitive to the first SWIR and
RE bands, followed by the red band.

These results highlight the relevance of RE1 and SWIR1
bands for crop mapping and complement the findings of ear-
lier studies. Yi, Jia, and Chen (2020) assessed the impor-
tance of S2 bands on the same task and found that RE1 and
SWIRI bands are more efficient in identifying crops than
other bands in the Shiyang River Basin in China. Similarly,
Liu, Qian, and Yue (2021) found that RE and SWIR bands of
S2 had irreplaceable effects on land cover classification. Fi-

explains the relatively higher importance of the red band and
its usage in the earliest VIs (Jordan 1969; Richardson and
Wiegand 1977; Xue and Su 2017)

Enhanced usage of VIs

In light of the insights gained from the importance of the
satellite bands for crop mapping, we proceed with a guided
selection of individual and binary combinations of VIs.

Given the significance of RE1, we include the normal-
ized difference red edge (NDRE) (Gitelson and Merzlyak
1994) index that uses the NIR and RE1 bands. We derive
two modified indices, NDRE2 and NDRE3, by replacing the
first RE channel with the second and third, respectively, to
verify whether the relative performance of the three indices
align with the attribution of their respective bands. We also
incorporate the normalized difference water index (NDMI),
which uses the first SWIR band, and create a modified ver-
sion, NDMI2, which uses the second SWIR band, influential
on rice identification. Additionally, we include the widely
used NDVI, and recognizing the comparable importance of
n-NIR, we introduce a modified index, narrow normalized
difference vegetation index (n-NDVI), where the NIR band
is replaced with n-NIR.

It is important to note that only the red, green, blue, and
NIR bands have a resolution of 10m, while the remaining



bands were originally captured either at a 20 or 60m reso-
lution. Therefore, we ensured that all our proposed indices
contain at least one of the high-resolution bands. The for-
mula of each index is listed in Table 3. We retrain our model
using individual indices or combinations of two indices as
inputs. The results are reported in Table 2.

Among the models trained on a single VI, the top-
performing model is based on NDMI, achieving an OA score
of 65%. This model outperformed the baseline in identify-
ing three crops: sorghum, groundnut, and yam. The second-
best model is based on the modified version of the same
index, NDMI2, which achieved the same class accuracy as
the baseline in sorghum and yam, and performed better in
soybean. The third-best model, based on the NDVI, slightly
outperformed the baseline on maize and soybean crops. The
n-NDVI The NDRE3-based model achieved the lowest OA
score, mainly due to its low accuracy in maize and rice crops.

Among the models trained on two VIs, the combina-
tion of NDRE and NDMI2 achieved the highest accuracies
for sorghum, maize, and rice, and outperformed the base-
line in groundnut and yam crops. This combination also
scored an OA of 70%, 3 percentage points (p.p) higher
than the baseline model. The combination of NDMI and n-
NDVI also demonstrated comparable performance. In con-
trast, combining NDRE and n-NDVI had the worst over-
all performance, mainly due to its low accuracy in rice
crops, despite its higher capacity to identify yam compared
to the other models. The combinations of NDVI+NDRE2
and NDVI+NDRES3 also displayed comparatively low over-
all performance.

Discussion

Our overall approach of exchanging the raw satellite bands
with few VIs exhibits promising results. The best model
based on a single index exhibited an OA 2p.p lower than
the baseline model, while using two indices achieved a 3p.p
higher accuracy in the best case. These results highlight
the potential of relying solely on one or two VIs for crop
identification, especially when carefully selected. In gen-
eral, larger datasets benefit from increased input features,
as they enable automatic learning of high-level features by
the model. However, in medium-sized training datasets like
ours, performance can be enhanced through careful input
feature selection.

As shown in Figure 1, SWIR1 appears to be significantly
important to identify rice and yam crops, accordingly the
NDMI-based models achieves the best accuracy for yam
and the second-best score for rice, among the single-index
based models. Combining NDMI with a second index also
achieved high accuracies for both crops. We further ob-
serve that the proposed NDMI2 achieved the best accura-
cies on rice compared to the other single-VI based mod-
els. Additionally, it demonstrated the highest accuracies on
sorghum, maize, and rice when combined with NDRE, out-
performing all VI-based models. On the other hand, the pro-
posed NDRE?2 and NDRES3 indices performed poorly on the
OA both when used individually and when combined with
NDVI, in contrast to NDRE, which achieved high scores,
particularly when combined with NDMI or NDMI2. This

observation aligns with the relative average importance of
the three RE bands, as shown in Figure 1, suggesting that the
first band is more suitable for crop identification. Nonethe-
less, the second and third RE bands were of higher impor-
tance for soybean and sorghum compared to the remaining
crops, which is consistent with the improvement in crop-
specific accuracies achieved by the NDRE2 and NDRE3-
based models compared to NDRE. In contrast, when com-
bined with NDVI, the NDRE performs better in both crops.

While the performance of the VI-based modeling aligns
with the attribution results conducted on the baseline model,
there were some behaviors that were not easily interpretable.
For instance, soybean identification relies significantly on
the first RE band, and while RE1 and RE3 have marginal im-
portance, according to the attribution results. Nonetheless,
the soybean classification accuracy is the much worse when
the model is trained with NDRE, compared to the NDRE2
and NDRE3 models. Similarly, the RE1 exhibits higher im-
portance for identifying yam crop compared to the other
two bands, while the performance of the three corresponding
single- based models had the opposite behavior.

Overall, one limitation of our XAlI-based approach is the
reliability of the model. Meaningful explanation results and
relevant scientific insights are conditioned by the scientific
accuracy of what the model has learned during the training.
Since our baseline had an OA score of 67%, we believe that
further improvements in the model’s performance can en-
hance its robustness, and consequently, the reliability of its
attribution results.

In future work, in addition to improving the performance
of the baseline model, we aim to extend the dataset to cover
other regions from multiple years, and validate our approach
on a broader range of crop types.

Conclusion

In this paper, we have successfully identified key VIs cru-
cial for discerning various crop types, guided by the spec-
tral importance results derived from the baseline model. Our
research contributes significantly to the accumulating evi-
dence highlighting the important role of information within
the RE and SWIR bands from S2 imagery in discriminat-
ing crop types. Leveraging these insights, we trained mul-
tiple models using individual VIs and combinations of two,
showing their ability to outperform the model trained on all
spectral bands. Notably, the efficacy of these models aligned
with the spectral importance in crop accuracies across most
cases.

In summary, our work presents a comprehensive frame-
work guiding practitioners through the vast array of over a
hundred VIs documented in the literature. Beyond its ap-
plication in crop type identification, our approach holds
promise for broader applications in remote sensing such as
forest health assessment, drought monitoring, soil moisture
estimation and flood mapping.
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