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Abstract

Symbolic regression is an AI-based technique whose ob-
jective is to learn concise mathematical expressions di-
rectly from data. Mathematical expressions are directly inter-
pretable and are not only good predictors but can also be used
for inferring causal behavior. Nearly all symbolic regression
methods are evaluated on synthetic datasets, which do not
necessarily have any hidden structure, and noise is generated
from a normal distribution and added to the simulated dataset.
In this paper, we present the application of symbolic regres-
sion to a real physics problem using data collected in high-
energy physics experiments. We show that the symbolic re-
gression method based on transformer neural networks could
learn a model similar to the so-called Tsallis distribution, a
well-known empirical law usually used to fit these datasets.

Introduction
It is widely acknowledged that the majority of deep learning-
based models are black boxes (BB), meaning the rela-
tionship between a model’s prediction and its inputs is
complex and entirely opaque. Existing methods, such as
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) and
LIME (Ribeiro, Singh, and Guestrin 2016), attempt to ex-
plain predictions of BB models. However, this approach is
often deemed inefficient in many application domains, and
some of these methods are BB, meaning a BB model is used
to explain the predictions of another BB model. A more di-
rect and effective strategy is to build interpretable models.
This is particularly pertinent in scientific research, where
underlying phenomena are typically expressed as mathe-
matical formulae. Symbolic regression (SR) perfectly aligns
with this philosophy, allowing the extraction of mathemat-
ical equations directly from data, in contrast to prevail-
ing practices where a pre-defined model is fit to data to
learn its parameters. This perspective, as outlined in (Cava
et al. 2021; Makke and Chawla 2023), aims at learning both
model structure and parameters.

Physics case study
The field of high-energy physics (HEP) aims to understand
and discover the universe by investigating the structure and
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Figure 1: A sketch of the deep inelastic scattering process,
where an electron (e−) scatters off a proton (blue circle).
The struck quark (blue ball inside the circle) hadronises into
hadrons (h) that are detected in the final state. The hadron
transverse momentum (p⃗T ) is the projection of the hadron’s
momentum (p⃗h) with respect to the direction of the ex-
changed photon (z-axis).

the formation of matter through particle collisions. In an ex-
ample HEP process, e.g., deep inelastic scattering, an el-
ementary particle, such as an electron (e−), scatters off a
composite particle (with substructure), such as a proton. The
electron interacts with the proton by exchanging a photon1

with one quark inside of it. The struck quark subsequently
hadronises into charged hadrons2 in the final state through
the hadronization mechanism, as illustrated in Fig. 1. The
collision is described by kinematic variables that are de-
fined from the energies of the incoming and the scattered
electrons. Final-state hadrons are described by two vari-
ables: the fractional energy (z) and the transverse momen-
tum (pT ) which is defined by the projection of the hadron’s
momentum (p⃗h) onto the direction of the exchanged pho-
ton. Whereas the theory of quantum electrodynamics fully
describes the elementary interaction between the electron
and the struck quark (eq), the hadronization mechanism can
not be determined by theoretical calculations and has to be
learned from data. A way to quantify this process is to mea-
sure the distribution of charged hadrons produced in the
scattering events, commonly called hadron spectra. These
are accessible in different HEP processes and are either in-
dependently fit or appropriately fit altogether in a so-called
“global fit” using a pre-defined functional form, where the

1The photon is the messenger of the electromagnetic force.
2A hadron refers to a composite particle in the Standard Model

(SM) of particle physics and consists of two or three quarks.
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Figure 2: Sketch of a pT spectra of charged hadrons (blue
markers) in comparison with (i) a pure exponential function
(orange dashed line), (ii) a power-law function (green dash-
dotted line), and (iii) the Tsallis distribution (red solid line).

numerical values of the function’s parameters are fit us-
ing data. Despite the significant progress made in the last
decade, the hadronization mechanism remains poorly un-
derstood, particularly when considering hadron transverse
momentum. This study investigates whether an analytical
model can be learned directly from hadron pT -spectra and
how it compares with the functional forms traditionally used
to fit these observables.

Shape and Functional form
The pT spectra of charged hadrons exhibit distinct pT -
dependence over the full pT range covered by experimen-
tal data. This shape is an essential and intriguing aspect of
hadron production in the study of particle collisions and re-
flects the interplay between various production mechanisms.
In the low-pT region, the spectra exhibit an exponential form
(exp(−pT /α)), where α is a fit parameter, highlighting that
hadrons are predominantly produced through thermal pro-
cesses following a statistical distribution described by the
Boltzmann-Gibbs statistics. In the high-pT region, the spec-
tra deviate from the exponential form and exhibit instead
a power-law behavior (p−n

T ), n is often referred to as the
“power-law index.” This is typically associated with non-
thermal hard processes, such as parton-parton3 interactions.
The curves of Fig. 2 illustrate both behaviors. Whereas nei-
ther one of these functions fully captures the data across the
entire range of pT , the so-called Tsallis distribution (Tsallis
1988) provides an exceptionally accurate description. The
latter was introduced by C. Tsallis in an attempt to gener-
alize the Boltzmann-Gibbs statistics to describe long-range
correlations in collisions of high-energy particles. It is de-
fined as:

f(pT ) = A
(
1− (1− q)

pT
T

)1/(1−q)

. (1)

3A parton is either a quark or a gluon

Figure 3: Comparison (Wong et al. 2015) of the Tsallis func-
tion (full line) with the experimental (markers) transverse
momentum distributions of hadrons in pp collisions. The
pure exponential fit is illustrated by the dashed curve.

where T can be physically interpreted as the temperature
of a thermal distribution and q is the inverse slope parameter.
This is equivalent to the power-law formula introduced by
Hagedorn (Hagedorn 1983):

f(pT ) = ApT

(
1 +

(
pT
p0

)2
)−n

(2)

This is approximately exp(−npT

p0
) at low-pT and p−n

T at
high-pT . Therefore, this function fully describes both the
exponential decay in energy in the low-pT region and the
power-law tail in the high-pT region. More importantly, it
adequately describes over 14 decades of magnitude from the
lowest to the highest pT spanned by the transverse momen-
tum spectra of charged hadrons measured at different energy
scales, as shown in Fig. 3. Both equations (1,2) have been
extensively used in phenomenological analyses of multipar-
ticle production in high-energy proton-proton and heavy ion
collisions at SPS, RHIC, and LHC experiments.

Symbolic regression
Symbolic regression (SR) is a subfield of machine learning
aiming to learn analytical forms of underlying models from
data, where both the model’s structure and parameters are
simultaneously learned. SR reduces to discovering a unary-
binary tree4 of mathematical symbols that are compatible
with data. In such trees, internal nodes represent functions
and leaf nodes represent variables or constants, as illustrated
in Fig. 4. The importance of this representation is that any

4Encoding mathematical expressions as computational trees
was introduced by Koza (Koza 1989) in his pioneering work on
genetic programming.
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Figure 4: (a) Expression-tree structure of the Coulomb force
Fe = kq1q2/r

2, which measures the interaction between
two electrically charged particles q1 and q2 distant by r.

tree can be traversed into a unique sequence of symbols5, al-
lowing for its use in sequence-to-sequence models. The op-
timization problem in SR is defined over the space of mathe-
matical expressions, composed from a set of allowable math-
ematical operators commonly called the library, e.g., L =
{x, add, sub, mul, div, sqrt, pow, cos, exp, etc.}, de-
fined in accordance with the problem. The SR problem is
very challenging given the discrete nature of the search
space and its size which grows exponentially with model
complexity. To further demonstrate this point, consider the
Coulomb force problem, Fe = kq1q2/r

2, which consists
of eight symbols, and a library consisting of 20 mathemat-
ical operations. Fitting the data set with a naive brute-force
search will have to consider up to 208 = 2.5 × 1010 candi-
date solutions without accounting for the optimization of nu-
merical constants. The number of trials increases with model
complexity (i.e., longer formula), making SR an “NP-hard”
problem (Virgolin and Pissis 2022). SR can be tackled with
various approaches based on genetic algorithms and deep
learning among others, as summarized in (Cava et al. 2021;
Makke and Chawla 2023). The deployment of genetic algo-
rithms allows the exploration of a large set of mathematical
equations through multiple generations. Each generation of
models is evaluated based on a fitness function and those
demonstrating better performance in terms of this metric are
retained and used as a starting point for the next iteration,
from which new models are derived by using traditional ge-
netic operations such as mutation, copy, and cross-over.

Analysis
This analysis applies SR to experimentally measured pT
spectra of charged hadrons. The primary dataset used in this
analysis is the semi-inclusive measurement of deep-inelastic
scattering, where a lepton scatters off a target proton, and a
final-state hadron is detected in coincidence with the scat-
tered lepton. Measured observables are the differential mul-
tiplicities of charged hadrons, measured as a function of p2T
across simultaneous intervals of three additional variables:
x, Q2, and z. Part of this dataset is presented in Fig. 5 in a
specific z range. Each group within the plot represents a dis-

5This is called ”polish form”
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Figure 5: Charged hadron multiplicities as a function of p2T
in various x and Q2 ranges. Each group represents a specific
x range and comprises various Q2 ranges denoted by differ-
ent colors. The color code for Q2 ranges is: {1: orange, 2:
red, 3: blue, 4: violet, 5: black}. The same color code is ap-
plied to all x ranges.

tinct x range and encompasses multiple spectra correspond-
ing to various Q2 intervals within that x range. The full
dataset consists of a total of 81 kinematic intervals, resulting
in 4918 data points, as reported in (Phy 2018). The observed
patterns reveal that the shape of the hadron multiplicities ex-
hibits substantial sensitivity to variations in x, while its de-
pendence on Q2 is comparatively weaker. In light of these
observations, various dataset configurations are considered
by selecting distinct sets of variables (i.e., features). Finally,
the transformer-based symbolic regression method, NeSym-
ReS (Biggio et al. 2021), is selected and applied to the data.
NeSymReS is the (first) SR method using a transformer neu-
ral network, which consists of an encoder-decoder structure.
The open source code of NeSymReS includes a pre-trained
model that was trained on 100 millions equations, which is
used in the present analysis. The use of this SR method is
driven by the fact that transformers learns causal relation-
ships between the input features.

Results
In the following, the dataset D will be defined in each sec-
tion, and reported results are obtained using SR, namely
NeSymReS, by independently applying it to each dataset,
unless expliotherwise stated. We will represent p2T by x for
simplicity.

Full pT range
1. 1D-configuration, D ≡ {p2T ,Mh}: In this case, the full

dataset includes 81 separate subsets. The most frequently
learned functions in these subsets are summarized in
Tab. 1. Although none of the learned functions provide



a fair and full description of the datasets, they commonly
share a basic structure that may be written as:

f(x) ∝ (1 + cxn)
−1

, n = 2, 3 (3)

2. 2D-configuration D ≡ {Q2, p2T ,M
h}: This case in-

cludes 32 separate data subsets. The top performing func-
tions, which provide a fair description of data, are two,
but only one is valid in terms of dimensional analysis
and is given by:

f(x) = (1 + c0x
3)−1 (4)

Truncated pT range
In this section, we consider the full dataset D ≡ {p2T ,Mh},
i.e., 81 data subsets. The full p2T range covered in the hadron
spectra is decomposed into low-p2T and large-p2T ranges, and
SR (NeSymReS) is independently applied on each dataset
with truncated pT range. Results are summarized in the fol-
lowing:

1. p2T < 0.5: The top learned function is an exponential
function such as exp(−x)/x2, c0 exp(c1x)/x. Notably,
an exponential form was not frequently learned, although
expected, and a combination of exponential and trigono-
metric functions, e.g., exp(sin(cx))/x was learned in nu-
merous cases with a good data-fit match. However, these
functions are discarded because data do not exhibit any
periodic behavior.

2. p2T > 0.5: The top performing functions obtained using
SR by discarding the low-p2T region (i.e., p2T < 0.5) are
reported in table 2 for different ranges of z. The function
that describes most datasets across various z ranges is:

f(x) = c0(1 + c1x
3)−1 (5)

for which the values of the loss function are significantly
better (from 2 up to 4 orders of magnitude difference)
than those obtained for f(x) = (1 + c0x

3)−1. This func-
tion was also learned by considering the full p2T range (f3
in table 1), except that it describes enormously better data
with p2T > 0.5. This observation is interesting; SR could
correctly learn the model’s basic structure regardless of
the data-fit match quality.

3. p2T > 1: The most commonly learned functions in this
range are summarized in table 3. The first four functions
describe at best datasets with p2T > 1. It’s noteworthy
that the first function that is explicitly a power-law func-
tion is expected to be the underlying function in the high
pT region, and the third function was already learned in
the previous extractions (cf. tables 1, 2). Finally, the last
function is learned in more than 50% of the datasets,
however, it does not correctly describe the shape of the
hadron spectra, mostly because of the absence of con-
stants to be optimized.

f(x) Loss range nb. of finding
f1 1/(1 + cx3) [1.17-3] 17
f2 1/(1 + cx2) [1.9-4.35] 9
f3 c0/(1 + c1x

3) [0.018-0.025] 12

Table 1: Functional forms learned using SR on 81 data sub-
sets where the full pT range is considered (x ≡ p2T ).

f(x) z1(18) z2(22) z3(22)
1/(1 + c0x

3) 8 11 -
c0/(1 + c1x

3) 8 4 2
c0/(1 + x3) - - 12

Table 2: Functional forms learned by applying SR on 81 data
subsets with a truncated pT range (p2T > 0.5). The numerals
represent the number of findings for each function, and the
total number of subsets in each z range is indicated in paren-
theses in the heading of the table. (x ≡ p2T ).

Discussion
The learned function that best describes datasets across mul-
tiple selections of variables and in spanning different regions
of pT by decomposing the full pT range was found to be:

f(x) = c0
(
1 + c1x

3
)−1

(6)
which can be written as:

f(x) = c0

(
1 +

(
x

c1

)3
)−1

(7)

The form of this learned function closely resembles the
Tsallis distribution (Eq. 1), where c0 serves as the normal-
ization constant analogous to A, c1 corresponds to the Tsal-
lis parameter resembling T , and −n corresponds to the ex-
ponent parameter equivalent to 1/(1−q). The key distinction
with the Tsallis distribution lies in the placement of the ex-
ponent parameter, which is associated with the variable itself
rather than the sum. This finding is very important; we could
learn, directly from data, a fundamental functional form that
(i) describes the full pT range with appropriate values of its
free parameters, (ii) is similar to Tsallis distribution, which
was theoretically developed from Boltzmann-Gibbs statis-
tics, and (iii) can be regarded as a generalization of the fun-
damental structure (1 + xn)−1, which has been learned in
the majority of the cases.

As a final remark, this analysis did not consider experi-
mental uncertainties of measured data (statistical and sys-
tematic uncertainties), and the check for dimensional analy-
sis was performed after the learning procedure, which solid-
ifies the result because considering experimental uncertain-
ties constantly improves the findings.

Conclusion
This paper discusses the application of symbolic regression
on a real physics problem, yet under investigation in multi-
ple high-energy physics experiments and by theorists. Two
goals were aimed: (i) to check if a mathematical expression



f(x) nb. of finding
1 c0x

c1 8
2 1/(1 + c0x

3) 1
3 c0/(1 + c1x

3) 1
4 c0x

c2/(1 + c1x)
c2 2

5 (1 + xn)−1, n = 3, 4 32

Table 3: Functional forms learned by applying SR on 81 data
subsets with a truncated pT range (p2T > 1). (x ≡ p2T ).

can be inferred from data and (ii) how it would compare
to existing formulae. The result is promising and highlights
that interpretable machine learning, through symbolic re-
gression, can be used to boost scientific discovery by learn-
ing simple mathematical expressions directly from data.
This result also emphasizes that interpretable machine learn-
ing would be used to guide research in theoretical physics.
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