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Abstract

Zeolites, crystalline aluminosilicate materials with well-
defined porous structures, have emerged as versatile materials
with applications in various fields, including catalysis and gas
separation. Hydrothermal synthesis is a widely used method
for zeolite production, offering control over crystallinity and
and pore size. However, the intricate interplay of synthesis pa-
rameters necessitates a comprehensive understanding to opti-
mize the synthesis process. We train a supervised classifica-
tion machine learning model on ZeoSyn (a dataset of zeo-
lite synthesis routes) to predict the zeolite framework prod-
uct given a synthesis route. Subsequently, we leverage SHap-
ley Additive Explanations (SHAP) to reveal key synthesis-
structure relationships in zeolites. To that end, we introduce
an aggregation SHAP approach to extend such analysis to ex-
plain the formation of composite building units (CBUs) of
zeolites. Analysis at this unprecedented scale sheds light on
key synthesis parameters driving zeolite crystallization.

Introduction
Zeolites are nanoporous, crystalline aluminosilicate mate-
rials with a wide range of industrial applications includ-
ing catalysis, separations, and ion exchange (Davis 2002).
The crystalline structure and corresponding porous network
is crucial in determining a zeolite’s suitability for a tar-
get application (Weitkamp 2000). While thousands of po-
tential zeolite structures are thought to be thermodynam-
ically accessible (Pophale, Cheeseman, and Deem 2011),
only about 250 have been synthesized (bae 2021) highlight-
ing a synthesis bottleneck to zeolite discovery and deploy-
ment. The synthesis of zeolites synthesis is intricate, with
numerous variables influencing the resultant zeolite struc-
ture (Corma and Davis 2004). These factors include types
and amounts of framework elements, the presence of inor-
ganic and organic cations, structure-directing agents, min-
eralizing agents and hydrothermal conditions. (Davis 2002;
Cundy and Cox 2005; Corma and Davis 2004; Lobo, Zones,
and Davis 1995; Moliner, Rey, and Corma 2013)

Many studies have examined parts of the zeolite synthesis
space including compositional gel ratios (Si/Al, Na/Si, OS-
DA/Si, H2O/Si, etc) (Simon-Masseron et al. 2007; Black-
well et al. 2003; Shvets et al. 2010; Corma et al. 2006a; Mo-
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liner et al. 2005), aging conditions (Ginter, Bell, and Radke
1992; Alfaro et al. 2007; Wu, Ren, and Wang 2008), crystal-
lization conditions (Zhang et al. 2013a,b; Güray et al. 1999),
and precursor selection (Li et al. 2018; Martı́n, Moliner,
and Corma 2015; Kumar, Li, and Rimer 2016) for specific
OSDA system (Csicsery 1984). However, knowledge of the
holistic interplay between these factors across the entire field
is lacking. Machine learning has the potential in generaliz-
ing some of these relationships(Corma et al. 2006b; Serra
et al. 2007; Jensen et al. 2019; Muraoka et al. 2019) but have
been limited to subsections of the zeolite design space due
to a lack of data, which implies that larger data sets may
generalize learning across the entire zeolite space.

We leverage ZeoSyn (Fig. S4), a comprehensive dataset
of 23,925 zeolite synthesis routes for >200 unique zeolite
frameworks (covering >80% of synthesized frameworks till
date) and nearly 1000 unique OSDAs, which constitutes
an order of magnitude larger than all previously published
zeolite synthesis datasets. Each unique synthesis route in
ZeoSyn is comprehensive, composing gel composition, re-
action conditions, inorganic precursors, OSDAs, resulting
zeolite structure, and select zeolite properties extracted from
the scientific literature. To examine relationships between
hydrothermal variables, OSDAs, and resulting zeolite struc-
tures, we train a supervised classification machine learn-
ing model on ZeoSyn to predict zeolite framework products
given a synthesis route. We employ SHapley Additive Ex-
planations (SHAP) to reveal key synthesis parameters driv-
ing the formation of over 200 zeolite frameworks and their
constituent composite building units (CBUs), and show po-
tential applications in phase-selective and intergrowth syn-
thesis. Analysis at this unprecedented level of scale is a step
toward an improved understanding of key synthesis parame-
ters driving zeolite crystallization, which could potentially
guide and accelerate the discovery of new zeolite frame-
works.

Methods
Zeolite and OSDA featurization
The zeolite structural properties (eg. ring sizes, largest in-
cluded sphere) are obtained from the IZA database (bae
2021). Zeolite frameworks are visualized using the 3dt
software. Composite building unit visualizations are taken



from the IZA database (bae 2021). We featurize the OSDA
using its physicochemical descriptors (eg. molecular vol-
ume and 2D shape descriptors) of the organic molecule
(Schwalbe-Koda et al. 2021; Jensen et al. 2021). The full
list of OSDA features and their descriptions can be found in
Table S1.

Zeolite framework prediction model
We train a supervised classification model using random for-
est to predict a zeolite framework product given a synthe-
sis recipe. The model takes in a 43-dimensional vector as
input where each element corresponds to either gel com-
position (eg. Si, Al, P, etc), reaction condition (eg. crystal-
lization time), or OSDA descriptor (eg. molecular volume).
The model predicts (1 out of 220 classes) zeolite frame-
work (three-letter code eg. KFI in Fig. 1a). A 80/20 ran-
dom train/test split is employed. Since the focus is on the
subsequent SHAP analysis, we train the model with default
parameters.

SHAP analysis of zeolite formation
To analyze the outcomes of the classification model (de-
picted in Fig. 1a, we employ SHAP (Lundberg and Lee
2017), which is a generalized measure for the impact of fea-
tures. This approach uses Shapley values from game the-
ory to compute the contribution made by each feature to
the model prediction. Features are likened to participants in
a ”game” representing the prediction task, and the SHAP
values measure how much prediction is attributed to these
features. These values signify the relative importance of a
specific feature and its impact on classification. For exam-
ple, as shown in Fig. 1c, SHAP values reveal how alter-
ing the value of a feature, either increasing or decreasing
it, will affect the model output. We calculate SHAP values
at two levels: 1) Framework-level SHAP quantifies the im-
pact of synthesis parameters on the formation of a zeolite
framework, based on the predicted probabilities by the clas-
sifier. 2) CBU-level SHAP quantifies the impact of synthe-
sis parameters on the formation of a composite building unit
(CBU). To obtain CBU-level SHAP values, we employ an
aggregation approach as follows:

Aggregated SHAP Let Sf ∈ Rn×m be the framework-
level SHAP matrix of framework f with n observations and
m features. The CBU-level SHAP matrix SCBU is given by
aggregating framework-level SHAP matrices:

SCBU =
∑

f∈FCBU

Sf (1)

where FCBU is the set of synthesized frameworks contain-
ing a specific CBU according to the IZA database(bae 2021).
For example, to obtain CBU-level SHAP matrix Ssod cor-
responding to the sod CBU, we determine the set of frame-
works containing sod, Fsod = {FAU, SOD,LTA} (Note:
For the sake for brevity, only 3 sod-containing frameworks
are listed as more exist). Subsequently, the CBU-level SHAP
is given by Ssod = SFAU + SSOD + SLTA. Intuitively,
by summing up Sf corresponding to frameworks containing
the CBU, this aggregation approach amplifies SHAP val-
ues corresponding to common features that highly impact

(positively or negatively) CBU formation, while suppress-
ing SHAP values corresponding to the features that do not
have much impact. As such, this effectively shifts the SHAP
analysis from a framework-centric to a CBU-centric view,
allowing for an understanding of factors driving the build-
ing units that make up zeolites.

Results and discussions
Zeolite framework prediction model
Given the high-dimensional space with synthesis parame-
ters spanning from inorganic elements, organic templates,
and reaction conditions, visualization in low dimension may
not fully capture complex structure-synthesis relationships
in zeolite crystallization. In data-driven synthesis planning,
reaction product prediction is a crucial task in informing
the outcome of a reaction (crystalline or amorphous phases)
given a set of synthesis parameters.

Model performance The model is evaluated on held-out,
unseen test syntheses on the framework prediction task, with
a model accuracy of 0.73. This performance is surprisingly
strong, as our model has the challenging task of predicting 1
out of 220 possible classes. This performance is comparable
to the reported accuracy of 0.82 reported by (Muraoka et al.
2019) whose model predicts only 1 out of 23 (almost 10
times fewer classes than ours) under OSDA-free conditions
(lower complexity of input).

The confusion matrix shown in Fig. 1b highlights clas-
sification performance on 1 representative small (CHA),
medium (MFI), large (*BEA), and extra-large (UTL) pore
framework, with ”Others” referring to all other frameworks
aggregated together, and ”Failed” referring to dense/amor-
phous phases. Evidently, the majority of the predictions lie
along the diagonal of the matrix, meaning that the major-
ity of predictions (0.68 – 0.88) are correct. As shown by
the high-intensity off-diagonal elements, the majority of the
errors made by the model are misclassifications as another
framework (”Others”) or dense/amorphous dense (”Failed”).
The model also shows strong performance in discriminating
different pore sizes as shown in Fig. S10 with high accura-
cies of 0.78 – 0.86.

Rationalization of synthesis-structure relationships
in zeolites
The synthesis knowledge learned by the classification model
can be analyzed to rationalize the impact of synthesis pa-
rameters on the formation of a specific zeolite framework.
As such, SHapley Additive exPlanations (SHAP) analy-
sis, a game-theoretic approach to explain the output of
ML models through optimal credit allocation with local
explanations (Lundberg and Lee 2017; Karpovich et al.
2023), is employed on the classification model to reveal
synthesis-structure relationships in zeolites. For each pre-
diction, SHAP values are calculated to determine the impact
of each synthesis parameter on the probability of forming a
specific zeolite framework (Fig. 1c). For instance, the first
row uncovers a physically-grounded trend that low crystal-
lization temperatures (blue points) have positive SHAP val-
ues (increases probability of LTA formation), while high



Figure 1: Interpretable ML framework for explaining
synthesis-structure relationships in zeolites (a) Schematic
of zeolite phase predictor model. Given synthesis param-
eters, the model fθ predicts the resultant framework (eg.
KFI). Additionally, if a dense or amorphous phase is ex-
pected, the model predicts a ”Failed” class. The predicted
framework probabilities are used to calculate framework-
level SHAP values. In addition, CBU-level SHAP values of
composite building units (CBUs) are obtained by aggregat-
ing framework-level SHAP values, allowing for CBU-level
analysis of synthesis parameters. (b) Normalized confusion
matrix of phase predictor model. Here, we have selected 1
representative small (CHA), medium (MFI), large (*BEA),
and extra-large pore (UTL) framework. ”Others” refers to
all other frameworks while ”Failed” refers to amorphous/-
dense phases. (c) An example of a framework-level SHAP
analysis quantifying the positive/negative impact of synthe-
sis parameters on the probability of LTA framework forma-
tion.

temperatures (orange points) have negative SHAP values
(decreases probability of LTA formation). This would agree
with the fact that LTA is a small-pore zeolite with a rela-
tively low framework density hence requiring low crystal-
lization temperatures. We quantify the impact of synthesis
parameters at two different levels of zeolite structure:

1. Framework-level SHAP shows the positive/negative
impact of a synthesis parameter on the probability of
crystallizing a specific zeolite framework (eg. KFI in Fig.
1a)

2. CBU-level SHAP shows the positive/negative impact of
a synthesis parameter on the probability of forming a
structure that contains a specific composite building unit
(CBU) (eg. pau cage in Fig. 1a)

Framework-level SHAP Framework-level SHAP identi-
fies the most important synthesis parameters driving the for-
mation of a specific zeolite framework. Larger positive/neg-
ative SHAP values correspond to larger positive/negative
changes in the probability of obtaining a specific framework
given the synthesis parameter. Here, we consider all 43 in-
puts into the model fθ and show only the top 10 most impor-
tant synthesis parameters (in descending order) for specific

frameworks as shown in Fig. 2a. This ordering of synthe-
sis parameters is determined by the mean absolute value of
SHAP values of the corresponding to the parameter.

We note the two different types of synthesis parameters:
1) inorganic, which relate to composition of the inorganic
components of the synthesis gel (eg. Si, Al, OH, F etc) 2)
OSDA, which relate to the organic template (eg. OSDA vol-
ume, OSDA rotatable bonds etc) as shown in Table S1. Con-
sequently, this allows us to categorize the formation of a
specific zeolite framework as 1 out of 3 main types of syn-
thesis based on its top synthesis parameters as shown in
Fig. 2a: 1) Gel-dominated 2) OSDA-dominated synthesis 3)
”Balanced” synthesis. An exhaustive list of framework-level
SHAP for 190 framework topologies reported on IZA has
been included in Fig. S16–S19.

Gel-dominated synthesis These frameworks have syn-
theses where inorganic components play a more crucial role,
with few (≤3 out of top 10) OSDA-related parameters. Fig.
2a shows two of such frameworks (CAN, KFI). In terms
of the gel composition, CAN and KFI share the common
trend that both are favored by high levels of mineralizing
agent OH. However, beyond that many gel components have
vastly different impacts on these two frameworks. For in-
stance, such analysis reveals CAN formation seems to be
favored by high Na and low K (Barnes, Addai-Mensah, and
Gerson 1999). Conversely, KFI formation follows the op-
posite trend, where it appears to be favored by low Na and
high K (Han et al. 2021). In terms of reaction conditions,
high and low crystallization temperatures favor CAN (due
to high framework density) and KFI, respectively (Dusse-
lier and Davis 2018).

OSDA-dominated synthesis These frameworks have
syntheses where OSDA features are more important. As
shown in Fig. 2a, both ISV and ITE have all of their top
synthesis parameters related to the OSDA. One notable ex-
ception is the high amount of F driving ISV formation due to
the presence of the d4r CBU in the framework (Villaescusa
et al. 2007). One can immediately observe that OSDAs fa-
voring these two frameworks have low asphericity (indicat-
ing the need for a spherical OSDA), high volume, and few
number of rotatable bonds (indicating rigidity). However,
differences do exist; ITE formation is associated with high
values of OSDA NPR 1 (first normalized principal moment
of inertia ratio) with the orange points clearly on the right
hand side, while this effect is not present in ISV formation
where orange and blue points overlap one another. More-
over, unlike ITE, ISV requires higher amounts of OSDA.
We hypothesize that physicochemical OSDA insights could
be used to guide the design of optimal OSDAs that target a
specific framework.

Balanced synthesis These frameworks have syntheses
being driven by a balance of inorganic and OSDA com-
ponents. In Fig. 2a, it is evident from the gel composition
parameters that high Ge promotes IWW formation, which
can be rationalized by Ge’s role in stabilizing the d4r cage
(Corma et al. 2003). In contrast, RUT requires high Si con-
tent, which could be expected considering its dense struc-
ture. In addition, high Na disfavors both frameworks, albeit
the impact of the Na parameter is ranked much lower. In-



Figure 2: (a) Framework-level SHAP analysis revealing
the top 10 (out of 43) most important synthesis parame-
ters favoring the formation of specific frameworks. Each
framework belongs to 1 out of 3 types of synthesis based
on its top synthesis parameters: 1) Gel-dominated synthe-
sis (CAN, KFI) where most top parameters are inorganic-
related, 2) OSDA-dominated synthesis (ISV, ITE) where
most top parameters are OSDA-related, and 3) balanced syn-
thesis (IWW, RUT) where even attribution is given to inor-
ganic and OSDA parameters. Every point is an individual
synthesis colored by the value of synthesis parameter (or-
ange and blue colors indicate high and low values, respec-
tively). (b) CBU-level SHAP analysis (obtained from ag-
gregated SHAP) of large CBUs showing OSDA parameters
favoring their formation.

spection of the OSDA spherocity reveals an opposing trend:
IWW and RUT are favored by low and high OSDA sphe-
rocity, respectively. This could be explained by the large
spherical cavity present in RUT (see Fig. S11a), while IWW
mainly consists of long channels (see Fig. S11b) that require
longer, less spherical OSDAs.

CBU-level SHAP Zeolites adopt a hierarchical structure
where CBUs combine to form the zeolite frameworks them-
selves. To obtain CBU-level SHAP values of a specific CBU,
we employ an aggregation SHAP approach of summing the
SHAP matrices of all known zeolite frameworks that contain
that CBU as described in the Methods section, allowing for
rationalization of synthesis-structure at a more fundamental
level. An exhaustive list of CBU-level SHAP for all CBUs
reported on IZA has been included in Fig. S14 (small CBUs)
and Fig. S15 (large CBUs).

Small CBUs We uncover the most important inorganic

Figure 3: Application of framework-level SHAP on com-
peting phases (TON and MFI). The left- and right-most
columns describe the optimal value of OSDA parameter for
maximizing formation probability of TON and MFI, re-
spectively. For example, the first row shows opposing effects
of OSDA spherocity: High OSDA spherocity promotes MFI
formation while suppressing TON (and vice versa).

parameters driving the formation of a selection of 4 small
CBUs in Fig. S12. Evidently, the synthesis of small CBUs
shown are all inorganic/gel-dominated instead of OSDA-
dominated with the top 5 parameters relating to the inor-
ganic components, which is expected. We observe the well-
established fact that high Ge and F are ranked as the top
parameters contributing to d4r formation. Furthermore, this
analysis reveals a less obvious relationship where low crys-
tallization temperature also positively influences d4r forma-
tion. Similarly, d8r is favored by low crystallization temper-
atures, but is mainly promoted by high K+ and Cs+ cations
(Asselman et al. 2022). can is driven by high K and requires
large amounts of OH as a mineralizing agent. Lastly, high
Na and low crystallization temperatures favor gme forma-
tion (Dusselier et al. 2017).

Large CBUs In contrast to small CBUs, the formation
of large CBUs are influenced by OSDA parameters due to
the need for a structure-directing effect by OSDAs. Fig. 2b
shows a series of large CBUs (≥ 30 T sites) with an increas-
ing aspect ratio (pau < los < ave < aft). Interestingly, in
the first row, CBU-level SHAP discovers a clear relation-
ship between aspect ratio of the CBU and OSDA aspheric-
ity (a measure of the deviation from sphere). For pau, low
OSDA asphericity gives rise to positive SHAP values, indi-
cating the need for a spherical OSDA. Indeed, this is due to
the symmetrical shape of the pau cage. As we transition to
a CBU with an even higher aspect ratio (aft), now only high
levels of OSDA asphericity (orange) are needed to drive its
formation, indicating the increasing need for longer, more
asymmetric molecules to template CBUs with increasing as-
pect ratio. In the last row SHAP unravels a rather surprising
trend: The first three CBUs (lta, los, ave) are favored by very
low number of OSDA rotatable bonds, which suggests the
need for rigid molecules. However, surprisingly the opposite
trend exists for aft, where there is a need for a more flexible
template with long dimensions (eg. hexamethonium) (Xie
2021).



Applications of SHAP analysis We suggest the utility of
the aforementioned SHAP analysis on an important appli-
cation in zeolite synthesis: Competing phases We consider
the most common pair of competing phases in the ZeoSyn
dataset, TON & MFI (Fig. S9), where these 2 frameworks
are frequently formed in the same synthesis. MFI is a frame-
work that often appears as a competing phase due to its ease
of synthesis and wide synthesis window. Here, we consider
achieving phase-selective of TON in the absence of MFI.
Fig. 3a shows the framework-level SHAP for TON and MFI
frameworks. In order to achieve a phase-selective synthe-
sis of TON, one may inspect the impact of OSDA sphe-
rocity (first row) on the two frameworks, which reveals op-
posing effects on the frameworks: Clearly, an OSDA with
low spherocity promotes TON formation while suppress-
ing MFI as indicated by the rightmost column. In the same
vein, the other factors relating to OSDA, such as axis 1,
axis 2, solvent-accessible surface area (SASA), principal
moment of inertia (PMI 1) and normalized principal mo-
ment of inertia ratio (NPR 1) all show opposing effects for
the 2 frameworks. As such, this showcases framework-level
SHAP as a powerful tool for identifying promising synthesis
”knobs” and recommends the appropriate direction to tune
these ”knobs” for phase-selective synthesis.

Conclusion
In this work, we leverage SHAP analysis to uncover the im-
pact of the key synthesis parameters for a zeolites. Further-
more, we introduce an aggregated SHAP approach to ex-
tend this analysis to the building unit level, allowing un-
derstanding of synthesis parameters at a more fundamen-
tal level. Furthermore, this approach has been shown to be
useful for the rational design of synthesis parameters for
phase-selective synthesis. It is hoped that such rationaliza-
tion would pave the way for data-driven discovery of zeolitic
materials.
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Cormano, J.; Martı́nez-Mañez, R.; Tsapatsis, M.; Liu, Z.;
Terasaki, O.; and Camblor, M. 2007. Pure silica large pore
zeolite ITQ-7: synthetic strategies, structure-directing ef-
fects, and control and nature of structural disorder. Chem-
istry of Materials, 19(7): 1601–1612.
Weitkamp, J. 2000. Zeolites and catalysis. Solid state ionics,
131(1-2): 175–188.
Wu, Y.; Ren, X.; and Wang, J. 2008. Effect of microwave-
assisted aging on the static hydrothermal synthesis of zeolite
MCM-22. Microporous and mesoporous materials, 116(1-
3): 386–393.
Xie, D. 2021. Rational design and targeted synthesis of
small-pore zeolites with the assistance of molecular model-
ing, structural analysis, and synthetic chemistry. Industrial
& Engineering Chemistry Research, 60(43): 15403–15415.
Zhang, H.; Xie, B.; Meng, X.; Müller, U.; Yilmaz, B.; Feyen,
M.; Maurer, S.; Gies, H.; Tatsumi, T.; Bao, X.; et al. 2013a.
Rational synthesis of Beta zeolite with improved quality by
decreasing crystallization temperature in organotemplate-
free route. Microporous and mesoporous materials, 180:
123–129.
Zhang, X.; Tang, D.; Zhang, M.; and Yang, R. 2013b. Syn-
thesis of NaX zeolite: Influence of crystallization time, tem-
perature and batch molar ratio SiO2/Al2O3 on the particu-
late properties of zeolite crystals. Powder Technology, 235:
322–328.



Appendix

Figure 4: The ZeoSyn dataset.

Figure 5: Number of synthetic routes for small, medium, large and extra-large pore frameworks in the dataset. Each framework
is further broken down into its constituent zeotypes by color.



Figure 6: Number of synthesis routes of the 50 most frequent frameworks in the dataset.

Figure 7: Distributions of reaction conditions in the dataset: crystallization temperatures (a/b) and times (c/d) of different
zeotypes and pore-sizes in the dataset.



Figure 8: Relationship between crystallization temperature vs. framework density of zeolite for (a) aluminosilicate (b) pure-Si
and (c) aluminophosphate frameworks across different pore sizes. Since multiple synthesis routes exist for a single framework
type, for each framework we plot the crystallization temperature that corresponds to the 20th percentile for that framework in
the dataset.



Figure 9: Number of synthesis routes with competing phases. y-axis is the major zeolite product, x-axis is the minor zeolite
product.



Table 1: Physicochemical descriptors of OSDAs.

OSDA descriptor Description

Asphericity An anisometry descriptor for the deviation from the spherical shape

Axis 1 Two-dimensional (2D) shape descriptors of molecule calculated by project-
ing the atomic coordinates into a 2D space based on a principal component
analysis (PCA) of the positions. The range of the distribution of points in
each principal component is reported as the axis of the conformer. Axis 1 is
reported as the larger axis, whereas Axis 2 is the smaller axis

Axis 2 See above

Charge Formal charge of molecule

SASA Solvent-accessible surface area (SASA) is the surface area of a molecule that
is accessible to a solvent

Molecular weight Molecular mass of molecule

NPR 1 Normalized principal moments ratio (I1/I3) where I is principal moment of
inertia

NPR 2 Normalized principal moments ratio (I2/I3) where I is principal moment of
inertia

Rotatable bonds Number of rotatable bonds in the molecule. A measure of molecular flexi-
bility.

PMI 1 Principal moments of inertia (PMI) are physical quantities related to the ro-
tational dynamics of a molecule.

I =

A∑
i=1

mi · r2i (2)

where A is the number of atoms, and mi is the atomic mass and ri is the
perpendicular distance from the chosen axis of the ith atom of the molecule

PMI 2 See above

PMI 3 See above

Spherocity Spherocity index of molecule

Volume Molecular volume calculated by using a grid-encoding of the molecular
shape using a grid spacing of 0.2 Å and 2.0 Å of margin for the boxes

Table 2: Number of synthesis routes of intergrowths.

Intergrowth Number of synthesis routes

ISV/BEC 167
ERI/OFF 74
MFI/MEL 47
TON/MTT 43
FAU/EMT 7
AFX/CHA 6
BEA/BEC 5
CHA/AEI 7
STF/SFF 2
RUT/RTH 2
MEL/ZSM-55 1
MOR/MFI 1



Figure 10: Normalized confusion matrix of phase predictor model. Here, we aggregate frameworks according to small, medium,
large and extra-large pore frameworks. ”Failed” refers to amorphous/dense phases.

Figure 11: The (a) spherical cavities in RUT (b) long channels in IWW explain the difference in OSDA spherocity favoring
the two frameworks: IWW is favored by spherical OSDAs while RUT is favored by longer OSDAs.



Figure 12: CBU-level SHAP analysis of small CBUs showing top 10 most important inorganic parameters (y-axis) contributing
to their formation.



Figure 13: Application of framework-level SHAP on competing phases (*BEA and BEC). The left- and right-most columns
describe the optimal value of OSDA parameter for maximizing formation probability of *BEA and BEC, respectively.



Figure 14: CBU-level SHAP of all small CBUs on IZA.



Figure 15: CBU-level SHAP of all large CBUs on IZA.



Figure 16: Framework-level SHAP of zeolite topologies (disordered and interrupted frameworks), and topologies with IZA
code starting with A-C.



Figure 17: Framework-level SHAP of zeolite topologies with IZA code starting with C-K.



Figure 18: Framework-level SHAP of zeolite topologies with IZA code starting with L-S.



Figure 19: Framework-level SHAP of zeolite topologies with IZA code starting with S-Z.


